МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования, науки и молодежи Республики Крым Управление образования Администрации города Керчи Муниципальное бюджетное общеобразовательное учреждение города Керчи Республики Крым «Школа № 12 имени Героя Советского Союза Н.А. Белякова»

УТВЕРЖДЕНА

Приказом Министерства просвещения Российской Федерации от 18.05.2023 № 372 "Об утверждении федеральной образовательной программы среднего общего образования" с изменениями согласно Приказа Просвещения Министерства Российской Федерации № 704 от 09.10.2024 «О внесении изменений в некоторые приказы Министерства просвещения Российской Федерации, касающееся федеральных образовательных программ начального общего образования, основного общего образования и среднего общего образования

ФЕДЕРАЛЬНАЯ РАБОЧАЯ ПРОГРАММА

(ID 8415732)

учебного предмета «Математика. Углубленный уровень»

для обучающихся 10-11 классов

СОДЕРЖАНИЕ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	4
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО МАТЕМАТИКЕ	
НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ	8
Личностные результаты	8
Метапредметные результаты	9
ФЕДЕРАЛЬНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «АЛГЕБРА И НА МАТЕМАТИЧЕСКОГО АНАЛИЗА»	
Пояснительная записка	
Содержание обучения	
10 класс	
11 класс	
Предметные результаты	
Тематическое планирование	
10 класс	
11 класс	
ФЕДЕРАЛЬНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ»	38
Пояснительная записка	
Содержание обучения	40
10 класс	40
11 класс	41
Предметные результаты	42
Тематическое планирование	45
10 класс	
11 класс	
ФЕДЕРАЛЬНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ВЕРОЯТНОСТЬ	
И СТАТИСТИКА»	70
Пояснительная записка	70
Содержание обучения	71
10 класс	71
11 класс	72
Предметные результаты	72

Федеральная рабочая программа Математика. 10–11 классы (углубленный уро	вень)
Тематическое планирование	74
10 класс	74
11 класс	78
ПЕРЕЧЕНЬ (КОДИФИКАТОР) ПРОВЕРЯЕМЫХ ТРЕБОВАНИЙ К РЕЗУЛЬТАТАМ	
ОСВОЕНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ СРЕДНЕГО ОБЩЕГО	
ОБРАЗОВАНИЯ И ЭЛЕМЕНТОВ СОДЕРЖАНИЯ ПО МАТЕМАТИКЕ	82
Проверяемые на ЕГЭ по математике требования к результатам освоения основной	
образовательной программы среднего общего образования	82

Федеральная рабочая программа по учебному предмету «Математика» (углубленный уровень) (предметная область «Математика и информатика») (далее соответственно – программа по математике, математика) включает пояснительную записку, содержание обучения, планируемые результаты освоения программы по математике, тематическое планирование, перечень (кодификатор) проверяемых требований к результатам освоения основной образовательной программы среднего общего образования и элементов содержания по математике.

Пояснительная записка отражает общие цели и задачи изучения математики, характеристику психологических предпосылок к ее изучению обучающимися, место в структуре учебного плана, а также подходы к отбору содержания, к определению планируемых результатов и к структуре тематического планирования.

Содержание обучения раскрывает содержательные линии, которые предлагаются для обязательного изучения в каждом классе на уровне среднего общего образования.

Планируемые результаты освоения программы по математике включают личностные, метапредметные результаты за весь период обучения на уровне среднего общего образования, а также предметные достижения обучающегося за каждый год обучения.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа по математике углубленного уровня для обучающихся на уровне среднего общего образования разработана на основе ФГОС СОО с учетом требований, мировых предъявляемых к математическому образованию, и традиций российского образования. Реализация программы по математике обеспечивает овладение ключевыми компетенциями, составляющими основу ДЛЯ саморазвития И непрерывного образования, целостность общекультурного, личностного И познавательного развития личности обучающихся.

В программе по математике учтены идеи и положения концепции развития образования В Российской Федерации. математического Математическое образование должно решать задачу обеспечения необходимого стране числа обучающихся, математическая подготовка которых была бы достаточна для продолжения образования по различным направлениям, включая преподавание математики, математические исследования, работу в сфере информационных технологий и других, также обеспечения для каждого обучающегося возможности достижения математической подготовки с необходимым ему уровнем. На решение этих задач нацелена программа по математике углубленного уровня.

Необходимость математической подготовки обусловлена обусловлено ростом числа специальностей, связанных с непосредственным применением математики (в сфере экономики, бизнесе, технологических областях, гуманитарных сферах). Количество обучающихся, для которых математика становится фундаментом образования, планирующих заниматься творческой и исследовательской работой в области математики, информатики, физики, экономики и в других областях, увеличивается, в том числе с учетом обучающихся, кому математика нужна для использования в профессиях, не связанных непосредственно с ней.

Прикладная значимость математики обусловлена тем, что ее предметом являются фундаментальные структуры нашего мира: пространственные формы и отношения, функциональные зависимости неопределенности, от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической малоэффективна повседневная практическая деятельность. Во многих сферах профессиональной деятельности требуются умения выполнять расчеты, составлять алгоритмы, применять формулы, проводить геометрические измерения и построения, читать, обрабатывать, интерпретировать и представлять информацию в виде таблиц, диаграмм и графиков, понимать вероятностный характер случайных событий.

Одновременно с расширением сфер применения математики в современном обществе все более важным становится математический стиль мышления, проявляющийся в определенных умственных навыках. В процессе изучения математики в арсенал приемов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают способствуют механизм логических построений, выработке формулировать, обосновывать и доказывать суждения, тем самым формируют принадлежит математике в логический стиль мышления. Ведущая роль формировании алгоритмической компоненты мышления и воспитании умений действовать заданным алгоритмам, совершенствовать и конструировать новые. В процессе решения задач – основы для организации учебной деятельности на уроках математики – развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.

Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Математическое образование вносит свой вклад в формирование общей культуры человека.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

Приоритетными целями обучения математике в 10-11 классах на углубленном уровне продолжают оставаться:

формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция, производная, интеграл), обеспечивающих преемственность и перспективность математического образования обучающихся;

подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, пониманию математики как части общей культуры человечества;

развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики;

формирование функциональной математической грамотности: математические аспекты жизненных распознавать в реальных ситуациях изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач, интерпретировать полученные результаты.

Основными линиями содержания математики в 10 – 11 классах углубленного являются: «Числа и вычисления», «Алгебра» («Алгебраические выражения», «Уравнения и неравенства»), «Начала математического анализа», («Геометрические «Геометрия» фигуры И ИХ свойства», «Измерение геометрических величин»), «Вероятность И статистика». Данные развиваются параллельно, каждая в соответствии с собственной логикой, однако не независимо одна от другой, а в тесном контакте и взаимодействии. Кроме этого, их объединяет логическая составляющая, традиционно присущая математике и пронизывающая математические курсы И содержательные все Сформулированное во ФГОС СОО требование «умение оперировать понятиями: определение, аксиома, теорема, следствие, свойство, признак, доказательство, равносильные формулировки, умение формулировать обратное и противоположное утверждение, приводить примеры и контрпримеры, использовать

математической индукции, проводить доказательные рассуждения при решении задач, оценивать логическую правильность рассуждений» относится ко всем учебным курсам, а формирование логических умений распределяется по всем годам обучения на уровне среднего общего образования.

В соответствии с ФГОС СОО математика является обязательным предметом на данном уровне образования. Настоящей программой по математике предусматривается изучение учебного предмета «Математика» в рамках трех учебных курсов: «Алгебра и начала математического анализа», «Геометрия», «Вероятность и статистика». Формирование логических умений осуществляется на протяжении всех лет обучения на уровне среднего общего образования, а элементы логики включаются в содержание всех названных выше учебных курсов.

Общее число часов, рекомендованных для изучения математики, -544 часа: в 10 классе -272 часа (8 часов в неделю), в 11 классе -272 часа (8 часов в неделю).

Возможна корректировка общего числа часов, рекомендованных для изучения предмета, с учетом индивидуального подхода образовательных организаций к углубленному изучению математики, в рамках соблюдения гигиенических нормативов к недельной образовательной нагрузке.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО МАТЕМАТИКЕ НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

1) гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества, представление о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и другое), умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;

2) патриотического воспитания:

сформированность российской гражданской идентичности, уважения к прошлому и настоящему российской математики, ценностное отношение к достижениям российских математиков и российской математической школы, использование этих достижений в других науках, технологиях, сферах экономики;

3) духовно-нравственного воспитания:

осознание духовных ценностей российского народа, сформированность нравственного сознания, этического поведения, связанного с практическим применением достижений науки и деятельностью ученого, осознание личного вклада в построение устойчивого будущего;

4) эстетического воспитания:

эстетическое отношение к миру, включая эстетику математических закономерностей, объектов, задач, решений, рассуждений, восприимчивость к математическим аспектам различных видов искусства;

5) физического воспитания:

сформированность умения применять математические знания в интересах здорового и безопасного образа жизни, ответственное отношение к своему здоровью (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность), физическое совершенствование при занятиях спортивно-оздоровительной деятельностью;

6) трудового воспитания:

готовность к труду, осознание ценности трудолюбия, интерес к различным сферам профессиональной деятельности, связанным с математикой и ее приложениями, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы, готовность и способность к математическому образованию и самообразованию на протяжении всей жизни, готовность к активному участию в решении практических задач математической направленности;

7) экологического воспитания:

сформированность экологической культуры, понимание влияния социальноэкономических процессов на состояние природной и социальной среды, осознание глобального характера экологических проблем, ориентация на применение математических знаний для решения задач в области окружающей среды, планирование поступков и оценки их возможных последствий для окружающей среды;

8) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, понимание математической науки как сферы человеческой деятельности, этапов ее развития и значимости для развития цивилизации, овладение языком математики и математической культурой как средством познания мира, готовность осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

В результате изучения математики на уровне среднего общего образования у обучающегося будут сформированы познавательные универсальные учебные действия, коммуникативные универсальные учебные действия, регулятивные универсальные учебные действия, совместная деятельность.

Познавательные универсальные учебные действия Базовые логические действия:

выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями, формулировать определения понятий, устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;

воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие, условные;

выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях, предлагать критерии для выявления закономерностей и противоречий;

делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;

проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры, обосновывать собственные суждения и выводы;

выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учетом самостоятельно выделенных критериев).

Базовые исследовательские действия:

использовать вопросы как исследовательский инструмент познания, формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;

проводить самостоятельно спланированный эксперимент, исследование по установлению особенностей математического объекта, явления, процесса, выявлению зависимостей между объектами, явлениями, процессами;

самостоятельно формулировать обобщения и выводы по результатам проведенного наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;

прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

выявлять дефициты информации, данных, необходимых для ответа на вопрос и для решения задачи;

выбирать информацию из источников различных типов, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;

структурировать информацию, представлять ее в различных формах иллюстрировать графически;

оценивать надежность информации по самостоятельно сформулированным критериям.

Коммуникативные универсальные учебные действия Общение:

воспринимать и формулировать суждения в соответствии с условиями и целями общения, ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;

в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения, сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций, в корректной форме формулировать разногласия, свои возражения;

представлять результаты решения задачи, эксперимента, исследования, проекта, самостоятельно выбирать формат выступления с учетом задач презентации и особенностей аудитории.

Регулятивные универсальные учебные действия Самоорганизация:

составлять план, алгоритм решения задачи, выбирать способ решения с учетом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учетом новой информации.

Самоконтроль:

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов, владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;

предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных трудностей;

оценивать соответствие результата цели и условиям, объяснять причины достижения или недостижения результатов деятельности, находить ошибку, давать оценку приобретенному опыту.

Совместная деятельность:

понимать и использовать преимущества командной и индивидуальной работы при решении учебных задач, принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы, обобщать мнения нескольких людей;

участвовать в групповых формах работы (обсуждения, обмен мнений, «мозговые штурмы» и иные), выполнять свою часть работы и координировать свои действия с другими членами команды, оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.

Предметные результаты освоения федеральной рабочей программы по математике представлены по годам обучения в рамках отдельных учебных курсов в соответствующих разделах настоящей программы.

ФЕДЕРАЛЬНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебный курс «Алгебра и начала математического анализа» является одним из наиболее значимых в программе среднего общего образования, поскольку, с одной стороны, он обеспечивает инструментальную базу для изучения всех естественно-научных курсов, а с другой стороны, формирует логическое и абстрактное мышление обучающихся на уровне, необходимом для освоения информатики, обществознания, истории, словесности и других дисциплин. В рамках данного учебного курса обучающиеся овладевают универсальным языком современной науки, которая формулирует свои достижения в математической форме.

Учебный курс алгебры и начал математического анализа закладывает основу для успешного овладения законами физики, химии, биологии, понимания основных тенденций развития экономики и общественной жизни, позволяет ориентироваться в современных цифровых и компьютерных технологиях, уверенно использовать их для дальнейшего образования и в повседневной жизни. Овладение абстрактными и логически строгими конструкциями алгебры и математического анализа развивает умение находить закономерности, обосновывать истинность, доказывать утверждения с помощью индукции и использовать обобщение дедуктивно, рассуждать И конкретизацию, абстрагирование и аналогию, формирует креативное и критическое мышление.

В ходе изучения учебного курса «Алгебра и начала математического анализа» обучающиеся получают новый опыт решения прикладных задач, самостоятельного построения математических моделей реальных ситуаций, интерпретации полученных решений, знакомятся с примерами математических закономерностей в природе, науке и искусстве, с выдающимися математическими открытиями и их авторами.

Учебный курс обладает воспитательным потенциалом, который реализуется как через учебный материал, способствующий формированию научного мировоззрения, так и через специфику учебной деятельности, требующей продолжительной концентрации внимания, самостоятельности, аккуратности и ответственности за полученный результат.

В основе методики обучения алгебре и началам математического анализа лежит деятельностный принцип обучения.

В структуре учебного курса «Алгебра и начала математического анализа» выделены следующие содержательно-методические линии: «Числа и вычисления», «Функции и графики», «Уравнения и неравенства», «Начала математического анализа», «Множества и логика». Все основные содержательно-методические

линии изучаются на протяжении двух лет обучения на уровне среднего общего образования, естественно дополняя друг друга и постепенно насыщаясь новыми темами и разделами. Данный учебный курс является интегративным, поскольку объединяет в себе содержание нескольких математических дисциплин, таких как алгебра, тригонометрия, математический анализ, теория множеств, математическая логика и другие. По мере того как обучающиеся овладевают все более широким математическим них последовательно формируется и аппаратом, У совершенствуется умение строить математическую модель реальной ситуации, применять знания, полученные при изучении учебного курса, для решения самостоятельно сформулированной математической задачи, затем интерпретировать свой ответ.

Содержательно-методическая линия «Числа и вычисления» формирование навыков использования действительных чисел, которое было начато на уровне основного общего образования. На уровне среднего общего образования особое внимание уделяется формированию навыков рациональных вычислений, включающих в себя использование различных форм записи числа, умение делать прикидку, выполнять приближенные вычисления, оценивать числовые выражения, работать с математическими константами. Множества натуральных, целых, рациональных и действительных чисел дополняются множеством комплексных чисел. В каждом из этих множеств рассматриваются свойственные ему специфические задачи и операции: деление нацело, оперирование остатками на множестве целых чисел, особые свойства рациональных и иррациональных чисел, арифметические операции, а также извлечение корня натуральной степени на множестве комплексных чисел. Благодаря последовательному расширению чисел и знакомству с возможностями их применения для используемых решения различных задач формируется представление о единстве математики как науки и ее роли в построении моделей реального мира, широко используются обобщение и конкретизация.

Линия «Уравнения и неравенства» реализуется на протяжении всего обучения на уровне среднего общего образования, поскольку в каждом разделе Программы предусмотрено решение соответствующих задач. В результате обучающиеся овладевают различными методами решения рациональных, иррациональных, показательных, логарифмических и тригонометрических уравнений, неравенств и систем, а также задач, содержащих параметры. Полученные умения широко используются при исследовании функций с помощью производной, при решении прикладных задач и задач на нахождение наибольших и наименьших значений функции. Данная содержательная линия включает в себя также формирование умений выполнять расчеты по формулам, преобразования рациональных, иррациональных и тригонометрических выражений, а также выражений, содержащих степени и логарифмы. Благодаря изучению алгебраического

материала происходит дальнейшее развитие алгоритмического и абстрактного мышления обучающихся, формируются навыки дедуктивных рассуждений, работы с символьными формами, представления закономерностей и зависимостей в виде равенств и неравенств. Алгебра предлагает эффективные инструменты для решения практических и естественно-научных задач, наглядно демонстрирует свои возможности как языка науки.

Содержательно-методическая линия «Функции графики» тесно переплетается с другими линиями учебного курса, поскольку в каком-то смысле изучения Изучение задает последовательность материала. показательной, логарифмической и тригонометрических функций, их свойств и графиков, использование функций для решения задач из других учебных предметов и реальной жизни тесно связано как с математическим анализом, так и с решением уравнений и неравенств. При этом большое внимание уделяется формированию умения выражать формулами зависимости между различными величинами, исследовать полученные функции, строить их графики. Материал этой содержательной линии нацелен на развитие умений и навыков, позволяющих выражать зависимости между величинами в различной форме: аналитической, графической и словесной. Его изучение способствует развитию алгоритмического мышления, способности к обобщению и конкретизации, использованию аналогий.

линия «Начала математического Содержательная анализа» существенно расширить круг как математических, так и прикладных задач, доступных обучающимся, так как у них появляется возможность строить графики сложных функций, определять их наибольшие и наименьшие значения, вычислять площади фигур и объемы тел, находить скорости и ускорения процессов. Данная содержательная линия открывает новые возможности построения математических моделей реальных ситуаций, позволяет находить наилучшее решение в прикладных, в том числе социально-экономических, задачах. Знакомство с математического анализа способствует развитию абстрактного, формально-логического и креативного мышления, формированию умений распознавать проявления законов математики в науке, технике и искусстве. Обучающиеся узнают о выдающихся результатах, полученных в ходе развития математики как науки, и об их авторах.

Содержательно-методическая линия «Множества и логика» включает в себя элементы теории множеств и математической логики. Теоретико-множественные представления пронизывают весь курс школьной математики и предлагают наиболее универсальный язык, объединяющий все разделы математики и ее приложений, они связывают разные математические дисциплины и их приложения в единое целое. Важно дать возможность обучающемуся понимать теоретико-множественный язык современной математики и использовать его для выражения своих мыслей. Другим важным признаком математики как науки следует признать свойственную ей строгость обоснований и следование

определенным правилам построения доказательств. Знакомство с элементами математической логики способствует развитию логического мышления обучающихся, позволяет им строить свои рассуждения на основе логических правил, формирует навыки критического мышления.

В учебном курсе «Алгебра и начала математического анализа» присутствуют основы математического моделирования, которые призваны способствовать формированию навыков построения моделей реальных ситуаций, исследования этих моделей с помощью аппарата алгебры и математического анализа, интерпретации полученных результатов. Такие задания вплетены в каждый из разделов программы, поскольку весь материал учебного курса для решения прикладных задач. При решении реальных практических задач обучающиеся развивают наблюдательность, умение находить абстрагироваться, использовать аналогию, закономерности, конкретизировать проблему. Деятельность по формированию навыков решения прикладных задач организуется в процессе изучения всех тем учебного курса «Алгебра и начала математического анализа».

Общее число часов, рекомендованных для изучения учебного курса «Алгебра и начала математического анализа», -272 часа: в 10 классе -136 часов (4 часа в неделю), в 11 классе -136 часов (4 часа в неделю).

Возможна корректировка общего числа часов, рекомендованных для изучения учебного курса, с учетом индивидуального подхода образовательных организаций к углубленному изучению алгебры и начал математического анализа, в рамках соблюдения гигиенических нормативов к недельной образовательной нагрузке.

СОДЕРЖАНИЕ ОБУЧЕНИЯ

10 КЛАСС

Числа и вычисления

Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби. Применение дробей и процентов для решения прикладных задач из различных отраслей знаний и реальной жизни.

Действительные числа. Рациональные и иррациональные числа. Арифметические операции с действительными числами. Модуль действительного числа и его свойства. Приближенные вычисления, правила округления, прикидка и оценка результата вычислений.

Степень с целым показателем. Бином Ньютона. Использование подходящей формы записи действительных чисел для решения практических задач и представления данных.

Арифметический корень натуральной степени и его свойства.

Степень с рациональным показателем и ее свойства, степень с лействительным показателем.

Логарифм числа. Свойства логарифма. Десятичные и натуральные логарифмы. Синус, косинус, тангенс, котангенс числового аргумента. Арксинус, арккосинус и арктангенс числового аргумента.

Уравнения и неравенства.

Тождества и тождественные преобразования. Уравнение, корень уравнения. Равносильные уравнения и уравнения-следствия. Неравенство, решение неравенства.

Основные методы решения целых и дробно-рациональных уравнений и неравенств. Многочлены от одной переменной. Деление многочлена на многочлен с остатком. Теорема Безу. Многочлены с целыми коэффициентами. Теорема Виета.

Преобразования числовых выражений, содержащих степени и корни.

Иррациональные уравнения. Основные методы решения иррациональных уравнений.

Показательные уравнения. Основные методы решения показательных уравнений.

Преобразование выражений, содержащих логарифмы.

Логарифмические уравнения. Основные методы решения логарифмических уравнений.

Основные тригонометрические формулы. Преобразование тригонометрических выражений. Решение тригонометрических уравнений.

Решение систем линейных уравнений. Матрица системы линейных уравнений. Определитель матрицы 2×2, его геометрический смысл и свойства, вычисление его значения, применение определителя для решения системы линейных уравнений. Решение прикладных задач с помощью системы линейных уравнений. Исследование построенной модели с помощью матриц и определителей.

Построение математических моделей реальной ситуации с помощью уравнений и неравенств. Применение уравнений и неравенств к решению математических задач и задач из различных областей науки и реальной жизни.

Функции и графики

Функция, способы задания функции. Взаимно обратные функции. Композиция функций. График функции. Элементарные преобразования графиков функций.

Область определения и множество значений функции. Нули функции. Промежутки знакопостоянства. Четные и нечетные функции. Периодические функции. Промежутки монотонности функции. Максимумы и минимумы функции. Наибольшее и наименьшее значения функции на промежутке.

Линейная, квадратичная и дробно-линейная функции. Элементарное исследование и построение их графиков.

Степенная функция с натуральным и целым показателем. Ее свойства и график. Свойства и график корня n-ой степени как функции обратной степени с натуральным показателем.

Показательная и логарифмическая функции, их свойства и графики. Использование графиков функций для решения уравнений.

Тригонометрическая окружность, определение тригонометрических функций числового аргумента.

Функциональные зависимости в реальных процессах и явлениях. Графики реальных зависимостей.

Начала математического анализа

Последовательности, способы задания последовательностей. Метод математической индукции. Монотонные и ограниченные последовательности. История возникновения математического анализа как анализа бесконечно малых.

Арифметическая и геометрическая прогрессии. Бесконечно убывающая геометрическая прогрессия. Сумма бесконечно убывающей геометрической прогрессии. Линейный и экспоненциальный рост. Число е. Формула сложных процентов. Использование прогрессии для решения реальных задач прикладного характера.

Непрерывные функции и их свойства. Точки разрыва. Асимптоты графиков функций. Свойства функций непрерывных на отрезке. Метод интервалов для решения неравенств. Применение свойств непрерывных функций для решения задач.

Первая и вторая производные функции. Определение, геометрический и физический смысл производной. Уравнение касательной к графику функции.

Производные элементарных функций. Производная суммы, произведения, частного и композиции функций.

Множества и логика

Множество, операции над множествами и их свойства. Диаграммы Эйлера—Венна. Применение теоретико-множественного аппарата для описания реальных процессов и явлений, при решении задач из других учебных предметов.

Определение, теорема, свойство математического объекта, следствие, доказательство, равносильные уравнения.

11 КЛАСС

Числа и вычисления

Натуральные и целые числа. Применение признаков делимости целых чисел, наибольший общий делитель (далее – НОД) и наименьшее общее кратное (далее – НОК), остатков по модулю, алгоритма Евклида для решения задач в целых числах.

Комплексные числа. Алгебраическая и тригонометрическая формы записи комплексного числа. Арифметические операции с комплексными числами.

Изображение комплексных чисел на координатной плоскости. Формула Муавра. Корни n-ой степени из комплексного числа. Применение комплексных чисел для решения физических и геометрических задач.

Уравнения и неравенства

Система и совокупность уравнений и неравенств. Равносильные системы и системы-следствия. Равносильные неравенства.

Отбор корней тригонометрических уравнений с помощью тригонометрической окружности. Решение тригонометрических неравенств.

Основные методы решения показательных и логарифмических неравенств.

Основные методы решения иррациональных неравенств.

Основные методы решения систем и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений.

Уравнения, неравенства и системы с параметрами.

Применение уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни, интерпретация полученных результатов.

Функции и графики

График композиции функций. Геометрические образы уравнений и неравенств на координатной плоскости.

Тригонометрические функции, их свойства и графики.

Графические методы решения уравнений и неравенств. Графические методы решения задач с параметрами.

Использование графиков функций для исследования процессов и зависимостей, которые возникают при решении задач из других учебных предметов и реальной жизни.

Начала математического анализа

Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке.

Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости и ускорения процесса, заданного формулой или графиком.

Первообразная, основное свойство первообразных. Первообразные элементарных функций. Правила нахождения первообразных.

Интеграл. Геометрический смысл интеграла. Вычисление определенного интеграла по формуле Ньютона—Лейбница.

Применение интеграла для нахождения площадей плоских фигур и объемов геометрических тел.

Примеры решений дифференциальных уравнений. Математическое моделирование реальных процессов с помощью дифференциальных уравнений.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения **в 10 классе** обучающийся получит следующие предметные результаты по отдельным темам федеральной рабочей программы учебного курса «Алгебра и начала математического анализа»:

Числа и вычисления:

свободно оперировать понятиями: рациональное число, бесконечная периодическая дробь, проценты, иррациональное число, множества рациональных и действительных чисел, модуль действительного числа;

применять дроби и проценты для решения прикладных задач из различных отраслей знаний и реальной жизни;

применять приближенные вычисления, правила округления, прикидку и оценку результата вычислений;

свободно оперировать понятием: степень с целым показателем, использовать подходящую форму записи действительных чисел для решения практических задач и представления данных;

свободно оперировать понятием: арифметический корень натуральной степени;

свободно оперировать понятием: степень с рациональным показателем; свободно оперировать понятиями: логарифм числа, десятичные и натуральные логарифмы;

свободно оперировать понятиями: синус, косинус, тангенс, котангенс числового аргумента;

оперировать понятиями: арксинус, арккосинус и арктангенс числового аргумента.

Уравнения и неравенства:

свободно оперировать понятиями: тождество, уравнение, неравенство, равносильные уравнения и уравнения-следствия, равносильные неравенства;

применять различные методы решения рациональных и дробно-рациональных уравнений, применять метод интервалов для решения неравенств;

свободно оперировать понятиями: многочлен от одной переменной, многочлен с целыми коэффициентами, корни многочлена, применять деление многочлена на многочлен с остатком, теорему Безу и теорему Виета для решения задач;

свободно оперировать понятиями: система линейных уравнений, матрица, определитель матрицы 2×2 и его геометрический смысл, использовать свойства определителя 2×2 для вычисления его значения, применять определители для решения системы линейных уравнений, моделировать реальные ситуации с помощью системы линейных уравнений, исследовать построенные модели с помощью матриц и определителей, интерпретировать полученный результат;

использовать свойства действий с корнями для преобразования выражений;

выполнять преобразования числовых выражений, содержащих степени с рациональным показателем;

использовать свойства логарифмов для преобразования логарифмических выражений;

свободно оперировать понятиями: иррациональные, показательные и логарифмические уравнения, находить их решения с помощью равносильных переходов или осуществляя проверку корней;

применять основные тригонометрические формулы для преобразования тригонометрических выражений;

свободно оперировать понятием: тригонометрическое уравнение, применять необходимые формулы для решения основных типов тригонометрических уравнений;

моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства по условию задачи, исследовать построенные модели с использованием аппарата алгебры.

Функции и графики:

свободно оперировать понятиями: функция, способы задания функции, взаимно обратные функции, композиция функций, график функции, выполнять элементарные преобразования графиков функций;

свободно оперировать понятиями: область определения и множество значений функции, нули функции, промежутки знакопостоянства;

свободно оперировать понятиями: четные и нечетные функции, периодические функции, промежутки монотонности функции, максимумы и минимумы функции, наибольшее и наименьшее значение функции на промежутке;

свободно оперировать понятиями: степенная функция с натуральным и целым показателем, график степенной функции с натуральным и целым показателем, график корня n-ой степени как функции обратной степени с натуральным показателем;

оперировать понятиями: линейная, квадратичная и дробно-линейная функции, выполнять элементарное исследование и построение их графиков;

свободно оперировать понятиями: показательная и логарифмическая функции, их свойства и графики, использовать их графики для решения уравнений;

свободно оперировать понятиями: тригонометрическая окружность, определение тригонометрических функций числового аргумента;

использовать графики функций для исследования процессов и зависимостей при решении задач из других учебных предметов и реальной жизни, выражать формулами зависимости между величинами;

Начала математического анализа:

свободно оперировать понятиями: арифметическая и геометрическая прогрессия, бесконечно убывающая геометрическая прогрессия, линейный

и экспоненциальный рост, формула сложных процентов, иметь представление о константе;

использовать прогрессии для решения реальных задач прикладного характера; свободно оперировать понятиями: последовательность, способы задания последовательностей, монотонные и ограниченные последовательности, понимать основы зарождения математического анализа как анализа бесконечно малых;

свободно оперировать понятиями: непрерывные функции, точки разрыва графика функции, асимптоты графика функции;

свободно оперировать понятием: функция, непрерывная на отрезке, применять свойства непрерывных функций для решения задач;

свободно оперировать понятиями: первая и вторая производные функции, касательная к графику функции;

вычислять производные суммы, произведения, частного и композиции двух функций, знать производные элементарных функций;

использовать геометрический и физический смысл производной для решения задач.

Множества и логика:

свободно оперировать понятиями: множество, операции над множествами; использовать теоретико-множественный аппарат для описания реальных процессов и явлений, при решении задач из других учебных предметов;

свободно оперировать понятиями: определение, теорема, уравнение-следствие, свойство математического объекта, доказательство, равносильные уравнения и неравенства.

К концу обучения **в 11 классе** обучающийся получит следующие предметные результаты по отдельным темам федеральной рабочей программы учебного курса «Алгебра и начала математического анализа»:

Числа и вычисления:

свободно оперировать понятиями: натуральное и целое число, множества натуральных и целых чисел, использовать признаки делимости целых чисел, НОД и НОК натуральных чисел для решения задач, применять алгоритм Евклида;

свободно оперировать понятием остатка по модулю, записывать натуральные числа в различных позиционных системах счисления;

свободно оперировать понятиями: комплексное число и множество комплексных чисел, представлять комплексные числа в алгебраической и тригонометрической форме, выполнять арифметические операции с ними и изображать на координатной плоскости.

Уравнения и неравенства:

свободно оперировать понятиями: иррациональные, показательные и логарифмические неравенства, находить их решения с помощью равносильных переходов;

осуществлять отбор корней при решении тригонометрического уравнения; свободно оперировать понятием тригонометрическое неравенство, применять необходимые формулы для решения основных типов тригонометрических неравенств;

свободно оперировать понятиями: система и совокупность уравнений и неравенств, равносильные системы и системы-следствия, находить решения системы и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений и неравенств;

решать рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения и неравенства, содержащие модули и параметры;

применять графические методы для решения уравнений и неравенств, а также задач с параметрами;

моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства и их системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат.

Функции и графики:

строить графики композиции функций с помощью элементарного исследования и свойств композиции двух функций;

строить геометрические образы уравнений и неравенств на координатной плоскости;

свободно оперировать понятиями: графики тригонометрических функций; применять функции для моделирования и исследования реальных процессов.

Начала математического анализа:

использовать производную для исследования функции на монотонность и экстремумы;

находить наибольшее и наименьшее значения функции непрерывной на отрезке;

использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах, для определения скорости и ускорения процесса, заданного формулой или графиком;

свободно оперировать понятиями: первообразная, определенный интеграл, находить первообразные элементарных функций и вычислять интеграл по формуле Ньютона—Лейбница;

находить площади плоских фигур и объемы тел с помощью интеграла;

иметь представление о математическом моделировании на примере составления дифференциальных уравнений;

решать прикладные задачи, в том числе социально-экономического и физического характера, средствами математического анализа.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 КЛАСС

Название раздела (темы)	Количество часов	Основное содержание	Основные виды деятельности обучающихся
Множество действительных чисел. Многочлены. Рациональные уравнения и неравенства. Системы линейных уравнений	24	Множество, операции над множествами и их свойства. Диаграммы Эйлера — Венна. Применение теоретикомножественного аппарата для решения задач. Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби. Применение дробей и процентов для решения прикладных задач. Действительные числа. Рациональные и иррациональные числа. Арифметические операции с действительными числами. Модуль действительного числа и его свойства. Приближенные вычисления, правила округления, прикидка и оценка результата вычислений.	Использовать теоретико- множественный аппарат для описания хода решения математических задач, а также реальных процессов и явлений. Оперировать понятиями: рациональное число, бесконечная периодическая дробь, проценты; иррациональное и действительное число; модуль действительного числа; использовать эти понятия при проведении рассуждений и доказательств, применять дроби и проценты для решения прикладных задач из различных отраслей знаний и реальной жизни. Использовать приближенные вычисления, правила округления, прикидку и оценку результата вычислений.

Основные методы решения целых и дробно-рациональных уравнений и неравенств. Многочлены от одной переменной. Деление многочлена на многочлен с остатком. Теорема Безу. Многочлены с целыми коэффициентами. Теорема Виета. Решение систем линейных уравнений. Матрица системы линейных уравнений. Определитель матрицы 2×2, его геометрический смысл и свойства: вычисление его значения; применение определителя для решения системы линейных уравнений. Решение прикладных задач с помощью системы линейных уравнений

Применять различные методы решения рациональных и дробнорациональных уравнений; а также метод интервалов для решения неравенств.

Оперировать понятиями многочлен от одной переменной, его корни; применять деление многочлена на многочлен с остатком, теорему Безу и теорему Виета для решения задач.

Оперировать понятиями: система линейных уравнений, матрица, определитель матрицы. Использовать свойства определителя 2 × 2 для вычисления его значения, применять определители для решения системы линейных уравнений. Моделировать реальные ситуации с помощью системы линейных уравнений, исследовать построенные модели с помощью матриц и определителей, интерпретировать полученный результат

Функции и графики.	12	Функция, способы задания функции.	Оперировать понятиями: функция,
Степенная функция		Взаимно обратные функции.	способы задания функции; взаимно
с целым показателем		Композиция функций. График	обратные функции, композиция
		функции. Элементарные	функций, график функции, область
		преобразования графиков функций.	определения и множество значений
		Область определения и множество	функции, нули функции,
		значений функции. Нули функции.	промежутки знакопостоянства;
		Промежутки знакопостоянства.	линейная, квадратичная, дробно-
		Четные и нечетные функции.	линейная и степенная функции.
		Периодические функции.	Выполнять элементарные
		Промежутки монотонности	преобразования графиков функций.
		функции. Максимумы и минимумы	Знать и уметь доказывать четность
		функции. Наибольшее и наименьшее	или нечетность функции,
		значение функции на промежутке.	периодичность функции, находить
		Линейная, квадратичная и дробно-	промежутки монотонности
		линейная функции. Элементарное	функции, максимумы и минимумы
		исследование и построение графиков	функции, наибольшее и наименьшее
		этих функций.	значение функции на промежутке.
		Степень с целым показателем.	Формулировать и иллюстрировать
		Бином Ньютона.	графически свойства линейной,
		Степенная функция с натуральным	квадратичной, дробно-линейной и
		и целым показателем. Ее свойства	степенной функций.
		и график	Выражать формулами зависимости
			между величинами.
			Знать определение и свойства
			степени с целым показателем;

			подходящую форму записи действительных чисел для решения практических задач и представления данных
Арифметический корень <i>п</i> -ой степени. Иррациональные уравнения	15	Арифметический корень натуральной степени и его свойства. Преобразования числовых выражений, содержащих степени и корни. Иррациональные уравнения. Основные методы решения иррациональных уравнений. Равносильные переходы в решении иррациональных уравнений. Свойства и график корня <i>n</i> -ой степени как функции обратной степени с натуральным показателем	Формулировать, записывать в символической форме и использовать свойства корня <i>п</i> -ой степени для преобразования выражений. Находить решения иррациональных уравнений с помощью равносильных переходов или осуществляя проверку корней. Строить график функции корня <i>п</i> -ой степени как обратной для функции степени с натуральным показателем
Показательная функция. Показательные уравнения	10	Степень с рациональным показателем и ее свойства. Показательная функция, ее свойства и график. Использование графика функции для решения уравнений. Показательные уравнения. Основные методы решения показательных уравнений	Формулировать определение степени с рациональным показателем. Выполнять преобразования числовых выражений, содержащих степени с рациональным показателем. Использовать цифровые ресурсы

			для построения графика показательной функции и изучения ее свойств. Находить решения показательных уравнений
Логарифмическая функция. Логарифмические уравнения	18	Логарифм числа. Свойства логарифма. Десятичные и натуральные логарифмы. Преобразование выражений, содержащих логарифмы. Логарифмическая функция, ее свойства и график. Использование графика функции для решения уравнений. Логарифмические уравнения. Основные методы решения логарифмических уравнений. Равносильные переходы в решении логарифмических уравнений	Давать определение логарифма числа; десятичного и натурального логарифма. Использовать свойства логарифмов для преобразования логарифмических выражений. Строить график логарифмической функции как обратной к показательной и использовать свойства логарифмической функции для решения задач. Находить решения логарифмических уравнений с помощью равносильных переходов или осуществляя проверку корней
Тригонометрические выражения и уравнения	22	Синус, косинус, тангенс и котангенс числового аргумента. Арксинус, арккосинус и арктангенс числового аргумента. Тригонометрическая окружность,	Давать определения синуса, косинуса, тангенса и котангенса числового аргумента; а также арксинуса, арккосинуса и арктангенса числа.

		определение тригонометрических функций числового аргумента. Основные тригонометрические формулы. Преобразование тригонометрических выражений. Решение тригонометрических уравнений	Применять основные тригонометрические формулы для преобразования тригонометрических выражений. Применять формулы тригонометрии для решения основных типов тригонометрических уравнений
Последовательности и прогрессии	10	Последовательности, способы задания последовательностей. Метод математической индукции. Монотонные и ограниченные последовательности. История анализа бесконечно малых. Арифметическая и геометрическая прогрессии. Бесконечно убывающая геометрическая прогрессия. Сумма бесконечно убывающей геометрической прогрессии. Линейный и экспоненциальный рост. Число е. Формула сложных процентов. Использование прогрессии для решения реальных задач прикладного характера	Оперировать понятиями: последовательность, способы задания последовательностей; монотонные и ограниченные последовательности; исследовать последовательности на монотонность и ограниченность. Получать представление об основных идеях анализа бесконечно малых. Давать определение арифметической и геометрической прогрессии. Доказывать свойства арифметической и геометрической прогрессии, находить сумму членов прогрессии, а также сумму членов бесконечно убывающей геометрической прогрессии.

			Использовать прогрессии для решения задач прикладного характер. Применять формулу сложных процентов для решения задач из реальной практики
Непрерывные функции. Производная	20	Непрерывные функции и их свойства. Точка разрыва. Асимптоты графиков функций. Свойства функций непрерывных на отрезке. Метод интервалов для решения неравенств. Применение свойств непрерывных функций для решения задач. Первая и вторая производные функции. Определение, геометрический и физический смысл производной. Уравнение касательной к графику функции. Производные элементарных функций. Производная суммы, произведения, частного и композиции функций	Оперировать понятиями: функция непрерывная на отрезке, точка разрыва функции, асимптота графика функции. Применять свойства непрерывных функций для решения задач. Оперировать понятиями: первая и вторая производные функции; понимать физический и геометрический смысл производной; записывать уравнение касательной. Вычислять производные суммы, произведения, частного и сложной функции. Изучать производные элементарных функций. Использовать геометрический и физический смысл производной для решения задач

Повторение, обобщение, систематизация знаний	5	Основные понятия курса алгебры и начал математического анализа 10 класса, обобщение и систематизация знаний	Применять основные понятия курса алгебры и начал математического анализа для решения задач из реальной жизни и других школьных предметов
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	136		

11 КЛАСС

Название раздела (темы)	Количество часов	Основное содержание раздела (темы)	Основные виды деятельности обучающихся
Исследование функций с помощью производной	22	Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значения непрерывной функции на отрезке. Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости и ускорения процесса, заданного формулой или графиком. Композиция функций. Геометрические образы уравнений и неравенств на координатной плоскости	Строить график композиции функций с помощью элементарного исследования и свойств композиции. Строить геометрические образы уравнений и неравенств на координатной плоскости. Использовать производную для исследования функции на монотонность и экстремумы; находить наибольшее и наименьшее значения функции непрерывной на отрезке; строить графики функций на основании проведенного исследования. Использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах, для определения скорости и ускорения процесса, заданного формулой или графиком. Получать представление

			о применении производной в различных отраслях знаний
Первообразная и интеграл	12	Первообразная, основное свойство первообразных. Первообразные элементарных функций. Правила нахождения первообразных. Интеграл. Геометрический смысл интеграла. Вычисление определенного интеграла по формуле Ньютона— Лейбница. Применение интеграла для нахождения площадей плоских фигур и объемов геометрических тел. Примеры решений дифференциальных уравнений. Математическое моделирование реальных процессов с помощью дифференциальных уравнений	Оперировать понятиями: первообразная и определенный интеграл. Находить первообразные элементарных функций и вычислять интеграл по формуле Ньютона—Лейбница. Находить площади плоских фигур и объемы тел с помощью определенного интеграла. Знакомиться с математическим моделированием на примере дифференциальных уравнений. Получать представление о значении введения понятия интеграла в развитии математики
Графики тригонометрических функций. Тригонометрические неравенства	14	Тригонометрические функции, их свойства и графики. Отбор корней тригонометрических уравнений с помощью тригонометрической окружности.	Использовать цифровые ресурсы для построения графиков тригонометрических функции и изучения их свойств. Решать тригонометрические

		Решение тригонометрических неравенств	уравнения и осуществлять отбор корней с помощью тригонометрической окружности. Применять формулы тригонометрии для решения основных типов тригонометрических неравенств. Использовать цифровые ресурсы для построения и исследования графиков функций
Иррациональные, показательные и логарифмические неравенства	24	Основные методы решения показательных и логарифмических неравенств. Основные методы решения иррациональных неравенств. Графические методы решения иррациональных, показательных и логарифмических уравнений и неравенств	Применять свойства показательной и логарифмической функций к решению показательных и логарифмических неравенств. Обосновать равносильность переходов. Решать иррациональные и комбинированные неравенства, с помощью равносильных переходов. Использовать графические методы и свойства входящих в уравнение или неравенство функций для решения задачи

Комплексные числа	10	Комплексные числа. Алгебраическая и тригонометрическая формы записи комплексного числа. Арифметические операции с комплексными числами. Изображение комплексных чисел на координатной плоскости. Формула Муавра. Корни <i>n</i> -ой степени из комплексного числа. Применение комплексных чисел для решения физических и геометрических задач	Оперировать понятиями: комплексное число и множество комплексных чисел. Представлять комплексные числа в алгебраической и тригонометрической форме. Выполнять арифметические операции с ними. Изображать комплексные числа на координатной плоскости. Применять формулу Муавра и получать представление о корнях <i>п</i> -ой степени из комплексного числа. Знакомиться с примерами применения комплексных чисел для решения геометрических и физических задач
Натуральные и целые числа	10	Натуральные и целые числа. Применение признаков делимости целых чисел, НОД и НОК, остатков по модулю, алгоритма Евклида для решения задач в целых числах	Оперировать понятиями: натуральное и целое число, множество натуральных и целых чисел. Использовать признаки делимости целых чисел; остатки по модулю; НОД и НОК натуральных чисел; алгоритм Евклида для решения

			задач. Записывать натуральные числа в различных позиционных системах счисления
Системы рациональных, иррациональных показательных и логарифмических уравнений	12	Система и совокупность уравнений. Равносильные системы и системы-следствия. Основные методы решения систем и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений. Применение уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни, интерпретация полученных результатов	Оперировать понятиями: система и совокупность уравнений и неравенств; решение системы или совокупности; равносильные системы и системы-следствия. Находить решения систем и совокупностей целых рациональных, иррациональных, показательных и логарифмических уравнений и неравенств. Применять системы уравнений к решению текстовых задач из различных областей знаний и реальной жизни; интерпретировать полученные решения. Использовать цифровые ресурсы
Задачи с параметрами	16	Рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения,	Выбирать способ решения рациональных, иррациональных, показательных, логарифмических

		неравенства и системы с параметрами. Построение и исследование математических моделей реальных ситуаций с помощью уравнений, систем уравнений и неравенств с параметрами	и тригонометрических уравнений и неравенств, содержащих модули и параметры. Применять графические и аналитические методы для решения уравнений и неравенств с параметрами, а также исследование функций методами математического анализа. Строить и исследовать математические модели реальных ситуаций с помощью уравнений, неравенств и систем с параметрами
Повторение, обобщение, систематизация знаний	16	Основные понятия и методы курса, обобщение и систематизация знаний	Моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства и их системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат. Применять функции для моделирования и исследования реальных процессов.

		Решать прикладные задачи, в том числе социально- экономического и физического характера, средствами алгебры и математического анализа
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	136	

ФЕДЕРАЛЬНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Геометрия является одним из базовых курсов на уровне среднего общего образования, так как обеспечивает возможность изучения дисциплин естественно-научной направленности и предметов гуманитарного цикла. Логическое мышление, формируемое при изучении обучающимися понятийных основ геометрии, при доказательстве теорем и построении цепочки логических утверждений при решении геометрических задач, умение выдвигать и опровергать гипотезы непосредственно используются при решении задач естественно-научного цикла, в частности физических задач.

Цель освоения программы учебного курса «Геометрия» на углубленном уровне — развитие индивидуальных способностей обучающихся при изучении геометрии, как составляющей предметной области «Математика и информатика» через обеспечение возможности приобретения и использования более глубоких геометрических знаний и действий, специфичных геометрии, и необходимых для успешного профессионального образования, связанного с использованием математики.

Приоритетными задачами курса геометрии на углубленном уровне, расширяющими и усиливающими курс базового уровня, являются:

расширение представления о геометрии как части мировой культуры и формирование осознания взаимосвязи геометрии с окружающим миром;

формирование представления о пространственных фигурах как о важнейших математических моделях, позволяющих описывать и изучать разные явления окружающего мира, знание понятийного аппарата по разделу «Стереометрия» учебного курса геометрии;

формирование умения владеть основными понятиями о пространственных фигурах и их основными свойствами, знание теорем, формул и умение их применять, умения доказывать теоремы и находить нестандартные способы решения задач;

формирование умения распознавать на чертежах, моделях и в реальном мире многогранники и тела вращения, конструировать геометрические модели;

формирование понимания возможности аксиоматического построения математических теорий, формирование понимания роли аксиоматики при проведении рассуждений;

формирование умения владеть методами доказательств и алгоритмов решения, умения их применять, проводить доказательные рассуждения в ходе решения стереометрических задач и задач с практическим содержанием,

формирование представления о необходимости доказательств при обосновании математических утверждений и роли аксиоматики в проведении дедуктивных рассуждений;

развитие и совершенствование интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению геометрии;

формирование функциональной грамотности, релевантной геометрии: умения распознавать проявления геометрических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, моделирования реальных ситуаций, исследования построенных моделей, интерпретации полученных результатов.

Основными содержательными линиями учебного курса «Геометрия» в 10–11 классах являются: «Прямые и плоскости в пространстве», «Многогранники», «Тела вращения», «Векторы и координаты в пространстве», «Движения в пространстве».

ΦΓΟС COO требование Сформулированное «уметь оперировать понятиями», релевантных геометрии на углубленном уровне обучения в 10–11 ко всем содержательным линиям учебного классах, относится а формирование логических умений распределяется не только по содержательным линиям, но и по годам обучения. Содержание образования, соответствующее освоения Федеральной рабочей предметным результатам программы, распределенным по годам обучения, структурировано таким образом, чтобы ко всем основным, принципиальным вопросам обучающиеся обращались неоднократно, что позволяет организовать овладение геометрическими понятиями и навыками последовательно и поступательно, с соблюдением принципа преемственности, а новые знания включать в общую систему геометрических представлений обучающихся, расширяя и углубляя ее, образуя прочные множественные связи.

Переход к изучению геометрии на углубленном уровне позволяет:

создать условия для дифференциации обучения, построения индивидуальных образовательных программ, обеспечить углубленное изучение геометрии как составляющей учебного предмета «Математика»;

подготовить обучающихся к продолжению изучения математики с учетом выбора будущей профессии, обеспечивая преемственность между общим и профессиональным образованием.

Общее число часов, рекомендованных для изучения учебного курса «Геометрия» на углубленном уровне, -204 часа: в 10 классе -102 часа (3 часа в неделю), в 11 классе -102 часа (3 часа в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ

10 КЛАСС

Прямые и плоскости в пространстве

Основные понятия стереометрии. Точка, прямая, плоскость, пространство. Понятие об аксиоматическом построении стереометрии: аксиомы стереометрии и следствия из них.

Взаимное расположение прямых в пространстве: пересекающиеся, параллельные и скрещивающиеся прямые. Признаки скрещивающихся прямых. Параллельность прямых и плоскостей в пространстве: параллельные прямые в пространстве, параллельность трех прямых, параллельность прямой и плоскости. Параллельное и центральное проектирование, изображение фигур. Основные свойства параллельного проектирования. Изображение фигур в параллельной проекции. Углы с сонаправленными сторонами, угол между прямыми в пространстве. Параллельность плоскостей: параллельные плоскости, свойства параллельных плоскостей. Простейшие пространственные фигуры на плоскости: тетраэдр, параллелепипед, построение сечений.

Перпендикулярность прямой и плоскости: перпендикулярные прямые в пространстве, прямые параллельные и перпендикулярные к плоскости, признак перпендикулярности прямой и плоскости, теорема о прямой перпендикулярной плоскости. Ортогональное проектирование. Перпендикуляр и наклонные: расстояние от точки до плоскости, расстояние от прямой до плоскости, проекция фигуры на плоскость. Перпендикулярность плоскостей: признак перпендикулярности двух плоскостей. Теорема о трех перпендикулярах.

Углы в пространстве: угол между прямой и плоскостью, двугранный угол, линейный угол двугранного угла. Трехгранный и многогранные углы. Свойства плоских углов многогранного угла. Свойства плоских и двугранных углов трехгранного угла. Теоремы косинусов и синусов для трехгранного угла.

Многогранники

Виды многогранников, развертка многогранника. Призма: п-угольная призма, прямая и наклонная призмы, боковая и полная поверхность призмы. Параллелепипед, прямоугольный параллелепипед и его свойства. Кратчайшие пути на поверхности многогранника. Теорема Эйлера. Пространственная теорема Пифагора. Пирамида: п-угольная пирамида, правильная и усеченная пирамиды. Свойства ребер и боковых граней правильной пирамиды. Правильные многогранники: правильная призма и правильная пирамида, правильная треугольная пирамида и правильный тетраэдр, куб. Представление о правильных многогранниках: октаэдр, додекаэдр и икосаэдр.

Вычисление элементов многогранников: ребра, диагонали, углы. Площадь боковой поверхности и полной поверхности прямой призмы, площадь оснований,

теорема о боковой поверхности прямой призмы. Площадь боковой поверхности и поверхности правильной пирамиды, теорема о площади усеченной пирамиды.

Симметрия пространстве. Элементы симметрии правильных многогранников. Симметрия правильном многограннике: симметрия параллелепипеда, правильной симметрия правильных призм, симметрия пирамиды.

Векторы и координаты в пространстве

Понятия: вектор в пространстве, нулевой вектор, длина ненулевого вектора, векторы коллинеарные, сонаправленные и противоположно направленные векторы. Равенство векторов. Действия с векторами: сложение и вычитание векторов, сумма нескольких векторов, умножение вектора на число. Свойства сложения векторов. Свойства умножения вектора на число. Понятие компланарные векторы. Признак компланарности трех векторов. Правило параллелепипеда. Теорема о разложении вектора по трем некомпланарным векторам. Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами вектора и координатами точек. Угол между векторами. Скалярное произведение векторов.

11 КЛАСС

Тела вращения

Понятия: цилиндрическая поверхность, коническая поверхность, сферическая поверхность, образующие поверхностей. Тела вращения: цилиндр, конус, усеченный конус, сфера, шар. Взаимное расположение сферы и плоскости, касательная плоскость к сфере. Изображение тел вращения на плоскости. Развертка цилиндра и конуса. Симметрия сферы и шара.

Объем. Основные свойства объемов тел. Теорема об объеме прямоугольного параллелепипеда и следствия из нее. Объем прямой и наклонной призмы, цилиндра, пирамиды и конуса. Объем шара и шарового сегмента.

Комбинации тел вращения и многогранников. Призма, вписанная в цилиндр, описанная около цилиндра. Пересечение сферы и шара с плоскостью. Касание шара и сферы плоскостью. Понятие многогранника, описанного около сферы, сферы, вписанной в многогранник или тело вращения.

Площадь поверхности цилиндра, конуса, площадь сферы и ее частей. Подобие в пространстве. Отношение объемов, площадей поверхностей подобных фигур. Преобразование подобия, гомотетия. Решение задач на плоскости с использованием стереометрических методов.

Построение сечений многогранников и тел вращения: сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельное основанию и проходящее через вершину), сечения шара, методы построения сечений: метод следов, метод внутреннего проектирования, метод переноса секущей плоскости.

Векторы и координаты в пространстве

Векторы в пространстве. Операции над векторами. Векторное умножение векторов. Свойства векторного умножения. Прямоугольная система координат в пространстве. Координаты вектора. Разложение вектора по базису. Координатновекторный метод при решении геометрических задач.

Движения в пространстве

Движения пространства. Отображения. Движения и равенство фигур. Общие свойства движений. Виды движений: параллельный перенос, центральная симметрия, зеркальная симметрия, поворот вокруг прямой. Преобразования подобия. Прямая и сфера Эйлера.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу 10 класса обучающийся научится:

свободно оперировать основными понятиями стереометрии при решении задач и проведении математических рассуждений;

применять аксиомы стереометрии и следствия из них при решении геометрических задач;

классифицировать взаимное расположение прямых в пространстве, плоскостей в пространстве, прямых и плоскостей в пространстве;

свободно оперировать понятиями, связанными с углами в пространстве: между прямыми в пространстве, между прямой и плоскостью;

свободно оперировать понятиями, связанными с многогранниками;

свободно распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);

классифицировать многогранники, выбирая основания для классификации; свободно оперировать понятиями, связанными с сечением многогранников плоскостью;

выполнять параллельное, центральное и ортогональное проектирование фигур на плоскость, выполнять изображения фигур на плоскости;

строить сечения многогранников различными методами, выполнять (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу;

вычислять площади поверхностей многогранников (призма, пирамида), геометрических тел с применением формул;

свободно оперировать понятиями: симметрия в пространстве, центр, ось и плоскость симметрии фигуры;

свободно оперировать понятиями, соответствующими векторам и координатам в пространстве;

выполнять действия над векторами;

решать задачи на доказательство математических отношений и нахождение геометрических величин, применяя известные методы при решении математических задач повышенного и высокого уровня сложности;

применять простейшие программные средства и электронно-коммуникационные системы при решении стереометрических задач;

извлекать, преобразовывать и интерпретировать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;

применять полученные знания на практике: сравнивать и анализировать реальные ситуации, применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин;

иметь представления об основных этапах развития геометрии как составной части фундамента развития технологий.

К концу 11 класса обучающийся научится:

свободно оперировать понятиями, связанными с цилиндрической, конической и сферической поверхностями, объяснять способы получения;

оперировать понятиями, связанными с телами вращения: цилиндром, конусом, сферой и шаром;

распознавать тела вращения (цилиндр, конус, сфера и шар) и объяснять способы получения тел вращения;

классифицировать взаимное расположение сферы и плоскости;

вычислять величины элементов многогранников и тел вращения, объемы и площади поверхностей многогранников и тел вращения, геометрических тел с применением формул;

свободно оперировать понятиями, связанными с комбинациями тел вращения и многогранников: многогранник, вписанный в сферу и описанный около сферы, сфера, вписанная в многогранник или тело вращения;

вычислять соотношения между площадями поверхностей и объемами подобных тел;

изображать изучаемые фигуры, выполнять (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу, строить сечения тел вращения;

извлекать, интерпретировать и преобразовывать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;

свободно оперировать понятием вектор в пространстве;

выполнять операции над векторами;

задавать плоскость уравнением в декартовой системе координат;

решать геометрические задачи на вычисление углов между прямыми и плоскостями, вычисление расстояний от точки до плоскости, в целом, на применение векторно-координатного метода при решении;

свободно оперировать понятиями, связанными с движением в пространстве, знать свойства движений;

выполнять изображения многогранником и тел вращения при параллельном переносе, центральной симметрии, зеркальной симметрии, при повороте вокруг прямой, преобразования подобия;

строить сечения многогранников и тел вращения: сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельное основанию и проходящее через вершину), сечения шара;

использовать методы построения сечений: метод следов, метод внутреннего проектирования, метод переноса секущей плоскости;

доказывать геометрические утверждения;

применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной и неявной форме;

решать задачи на доказательство математических отношений и нахождение геометрических величин;

применять программные средства и электронно-коммуникационные системы при решении стереометрических задач;

применять полученные знания на практике: сравнивать, анализировать и оценивать реальные ситуации, применять изученные понятия, теоремы, свойства в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин;

иметь представления об основных этапах развития геометрии как составной части фундамента развития технологий.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 КЛАСС

Название раздела (темы) курса	Количество часов	Основное содержание	Основные виды деятельности учащихся
Введение в стереометрию	23	Основные пространственные фигуры. Понятия стереометрии: точка, прямая, плоскость, пространство. Основные правила изображения на рисунке плоскости, параллельных прямых (отрезков), середины отрезка. Понятия: пересекающиеся плоскости, пересекающиеся прямая и плоскость; полупространство. Многогранники, изображение простейших пространственных фигур, несуществующих объектов. Аксиомы стереометрии и первые следствия из них. Способы задания прямых и плоскостей в пространстве. Обозначения прямых и плоскостей. Сечения. Изображение сечений	Определять плоскость как фигуру, в которой выполняется планиметрия. Делать простейшие логические выводы из аксиоматики плоскости. Приводить примеры реальных объектов, идеализацией которых являются аксиомы геометрии. Изучать, применять принципы построения сечений. Использовать для построения сечений метод следов, метод внутреннего проектирования, метод переноса секущей плоскости. Решать стереометрические задачи: на определение вида сечения и нахождение его площади. Актуализировать факты и методы планиметрии, релевантные теме, проводить аналогии. Использовать при решении задач

		пирамиды, куба и призмы, которые	следующие планиметрические факты
		проходят через их ребра.	и методы:
		Изображение пересечения	
		_	Теоремы Фалеса
		полученных плоскостей.	и о пропорциональных отрезках.
		Раскрашивание построенных сечений	Алгоритм деления отрезка
		разными цветами.	на <i>п</i> равных частей. Теорема
		Метод следов для построения	Менелая.
		сечений. Свойства пересечений	Равнобедренный треугольник.
		прямых и плоскостей. Построение	Равносторонний треугольник.
		сечений в пирамиде, кубе по трем	Прямоугольный треугольник.
		точкам на ребрах. Создание	Свойство средней линии
		выносных чертежей и запись шагов	треугольника.
		построения.	Свойство биссектрисы угла
		Повторение планиметрии.	треугольника.
		Теорема о пропорциональных	Свойство медиан треугольника.
		отрезках. Подобие треугольников.	Признаки подобия треугольников.
		Теорема Менелая. Расчеты	Получать представления
		в сечениях на выносных чертежах.	об основных этапах развития
		История развития планиметрии	геометрии как составной части
		и стереометрии	фундамента развития технологий
Взаимное расположение	6	Взаимное расположение прямых	Классифицировать взаимное
прямых в пространстве		в пространстве. Скрещивающиеся	расположение прямых
		прямые. Признаки скрещивающихся	в пространстве, иллюстрируя
		прямых.	рисунками и приводя примеры
		Параллельные прямые	из реальной жизни.

в пространстве. Теорема о существовании и единственности прямой параллельной данной прямой, проходящей через точку пространства и не лежащей на данной прямой. Лемма о пересечении параллельных прямых плоскостью. Параллельность трех прямых. Теорема о трех параллельных прямых. Теорема о скрещивающихся прямых. Параллельное проектирование. Основные свойства параллельного проектирования. Изображение разных фигур в параллельной проекции. Центральная проекция. Угол с сонаправленными сторонами. Угол между прямыми. Задачи на доказательство и исследование, связанные с расположением прямых в пространстве

Доказывать теорему о существовании и единственности параллельной прямой, проходящей через точку пространства и не лежащей на другой прямой; лемму о пересечении плоскости двумя параллельными прямыми; теорему о трех параллельных прямых.

Доказывать признак скрещивающихся прямых, теорему о скрещивающихся прямых. Доказывать теорему о равенстве углов с сонаправленными сторонами. Объяснять, что называется параллельным и центральным проектированием и как выполняется проектирование фигур на плоскость. Доказывать свойства параллельного проектирования.

Изображать в параллельной проекции разные геометрические фигуры.

Решать стереометрические задачи на доказательство и исследование, связанные с расположением прямых

			в пространстве. Проводить доказательные рассуждения при решении геометрических задач, связанных со взаимным расположением прямых в пространстве. Сравнивать, анализировать и оценивать утверждения с целью выявления логически корректных и некорректных рассуждений. Моделировать реальные ситуации, связанные со взаимным расположением прямых в пространстве, на языке геометрии.
			понятий и теорем, аппарата алгебры, цифровых ресурсов. Получать представление о центральном проектировании и об истории работ по теории перспективы
Параллельность прямых и плоскостей в пространстве	8	Понятия: параллельность прямой и плоскости в пространстве. Признак параллельности прямой	Классифицировать взаимное расположение прямой и плоскости в пространстве, приводя

и плоскости. Свойства параллельности прямой и плоскости. Геометрические задачи на вычисление и доказательство, связанные с параллельностью прямых и плоскостей в пространстве. Построение сечения, проходящего через данную прямую на чертеже и параллельного другой прямой. Расчет отношений. Параллельная проекция, применение для построения сечений куба и параллелепипеда. Свойства параллелепипеда и призмы. Параллельные плоскости. Признаки параллельности двух плоскостей. Теорема о параллельности и единственности плоскости, проходящей через точку, не принадлежащую данной плоскости и следствия из нее. Свойства параллельных плоскостей: о параллельности прямых пересечения при пересечении двух параллельных плоскостей третьей; об отрезках параллельных прямых,

соответствующие примеры из реальной жизни. Формулировать определение параллельных прямой и плоскости. Доказывать признак о параллельности прямой и плоскости: свойства параллельности прямой и плоскости. Решать стереометрические задачи вычисления и доказательство, связанные с параллельностью прямых и плоскостей в пространстве. Решать практические задачи на построение сечений на чертежах тетраэдра и параллелепипеда. Решать стереометрические задачи, связанные с построением сечений плоскостью. Проводить логически корректные доказательные рассуждения при решении геометрических задач связанных с параллельностью плоскостей. Сравнивать и анализировать

реальные ситуации, связанные

с параллельностью прямой

		заключенных между параллельными плоскостями; о пересечении прямой с двумя параллельными плоскостями	и плоскости в пространстве; моделировать реальные ситуации, связанные с параллельностью прямой и плоскости в пространстве, на языке геометрии
Перпендикулярность прямых и плоскостей в пространстве	25	Повторение: теорема Пифагора на плоскости, тригонометрия прямоугольного треугольника. Свойства куба и прямоугольного параллелепипеда. Вычисление длин отрезков в кубе и прямоугольном параллелепипеде. Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости. Теорема о существовании и единственности прямой, проходящей через точку пространства и перпендикулярной к плоскости. Плоскости и перпендикулярные им прямая в многогранниках. Перпендикуляр и наклонная. Построение перпендикуляра из точки на прямую. Теорема о трех перпендикулярах	Актуализировать факты и методы планиметрии, релевантные теме, проводить аналогии. Формулировать определения: перпендикулярных прямых в пространстве; определение прямой, перпендикулярной к плоскости. Доказывать: лемму о перпендикулярности двух параллельных прямых к третьей прямой; теоремы о связи между параллельностью прямых и их перпендикулярностью к плоскости. Доказывать: теорему, выражающую признак перпендикулярности прямой и плоскости; теорему о существовании и единственности прямой, проходящей через данную точку и перпендикулярной к данной плоскости. Изображать взаимно

(прямая и обратная). Угол между скрешивающимися прямыми. Поиск перпендикулярных прямых с помощью перпендикулярных плоскостей Ортогональное проектирование. Построение сечений куба, призмы, правильной пирамиды с помощью ортогональной проекции. Симметрия в пространстве относительно плоскости. Плоскости симметрий в многогранниках. Признак перпендикулярности прямой и плоскости как следствие симметрии. Правильные многогранники Расчет расстояний от точки до плоскости. Способы опустить перпендикуляры: симметрия, сдвиг точки по параллельной прямой. Сдвиг по непараллельной прямой, изменение расстояний

перпендикулярные прямую и плоскость. Формулировать свойство перпендикуляра по отношению к плоскости. Получать представление о значении перпендикуляра для других областей науки (физика, энергетика, лазерные технологии), в реальной жизни (техника, окружающая обстановка). Доказывать утверждения, связанные с проекцией прямой на плоскость, неперпендикулярную к этой прямой. Доказывать теорему о трех перпендикулярах и теорему обратную теореме о трех перпендикулярах. Получать представление об ортогональном проектировании. Доказывать теорему о проекции точки на прямую. Решать стереометрические задачи, связанные с перпендикулярностью прямой и плоскости. Решать прикладные задачи,

связанные с нахождением

			геометрических величин. Решать стереометрические задачи, связанные с применением теоремы о трех перпендикулярах, нахождением расстояний, построением проекций. Сравнивать и анализировать утверждения с целью выявления логически корректных и некорректных и некорректных рассуждений. Анализировать и моделировать на языке геометрии реальные ситуации, связанные с перпендикулярностью прямой и плоскости; исследовать построенные модели, в том числе и с использованием аппарата алгебры
Углы и расстояния	16	Повторение: угол между прямыми на плоскости, тригонометрия в произвольном треугольнике, теорема косинусов. Повторение: угол между скрещивающимися прямыми в пространстве. Геометрические методы вычисления угла между	и с использованием аппарата алгебры Актуализировать факты и методы планиметрии, релевантные теме, проводить аналогии. Формулировать определение двугранного угла. Доказывать свойство равенства всех линейных углов двугранного угла. Классифицировать двугранные углы

прямыми в многогранниках. Двугранный угол. Свойство линейных углов двугранного угла. Перпендикулярные плоскости. Свойства взаимно перпендикулярных плоскостей. Признак перпендикулярности плоскостей; тео-рема о прямой пересечения двух плоскостей перпендикулярных третьей плоскости. Прямоугольный параллелепипед; куб; измерения, свойства прямоугольного параллелепипеда. Теорема о диагонали прямоугольного параллелепипеда и следствие из нее. Стереометрические и прикладные задачи, связанные со взаимным расположением прямых и плоскости. Повторение: скрещивающиеся прямые, параллельные плоскости в стандартных многогранниках. Пара параллельных плоскостей на скрещивающихся прямых, расстояние между скрещивающимися прямыми в простых ситуациях.

в зависимости от их градусной меры. Формулировать определение взаимно перпендикулярных плоскостей. Доказывать теорему о признаке перпендикулярности двух плоскостей. Формулировать следствие (из признака) о перпендикулярности плоскости, которая перпендикулярна прямой, по которой пересекаются две плоскости, эти плоскостям. Доказывать утверждения о его свойствах; теорему и следствие из нее о диагоналях прямоугольного параллелепипеда. Решать стереометрические задачи, связанные с перпендикулярность прямых и плоскостей, используя планиметрические факты и методы. Проводить логически корректные доказательные рассуждения при решении геометрических задач, связанных с перпендикулярностью плоскостей. Анализировать и моделировать

на языке геометрии реальные

		Опускание перпендикуляров, вычисление расстояний от точки до точки; прямой; плоскости. Вычисление расстояний между скрещивающимися прямыми с помощью перпендикулярной плоскости. Трехгранный угол, неравенства для трехгранных углов. Теорема Пифагора, теоремы косинусов и синусов для трехгранного угла. Элементы сферической геометрии: геодезические линии на Земле	ситуации, связанные с перпендикулярностью прямых и плоскостей. Исследовать построенные модели, в том числе и с использованием аппарата алгебры. Решать прикладные задачи, связанные с нахождением геометрических величин
Многогранники	7	Систематизация знаний: Многогранник и его элементы. Пирамида. Виды пирамид. Правильная пирамида. Призма. Прямая и наклонная призмы. Правильная призма. Прямой параллелепипед, прямоўгольный параллелепипед, куб. Выпуклые многогранники. Теорема Эйлера. Правильные и полуправильные многогранники	Работать с учебником: задавать вопросы, делать замечания, комментарии. Анализировать решение задачи. Рисовать выпуклые многогранники с заданными свойствами; восстанавливать общий вид выпуклого многогранника по двум его проекциям. Доказывать свойства выпуклого многогранника.

			Рисовать выпуклые многогранники с разной эйлеровой характеристикой; исследовать возможности получения результата при варьировании данных. Доказывать свойства правильных многогранников. Планировать построение правильных многогранников на поверхностях других правильных многогранников
Векторы в пространстве	12	Понятие вектора на плоскости и в пространстве. Сумма и разность векторов, правило параллелепипеда, умножение вектора на число, разложение вектора по базису трех векторов, не лежащих в одной плоскости. Скалярное произведение, вычисление угла между векторами в пространстве. Простейшие задачи с векторами	Актуализировать факты и методы планиметрии, релевантные теме, проводить аналогии. Оперировать понятиями: вектор на плоскости и в пространстве; компланарные векторы. Приводить примеры физических векторных величин. Осваивать правила выполнения действий сложения и вычитания векторов, умножения вектора на число. Доказывать признак компланарности трех векторов. Доказывать теорему о разложении

			любого вектора по трем данным некомпланарным векторам
Повторение, обобщение и систематизация знаний	5	Обобщающее повторение понятий и методов курса геометрии 10 класса, систематизация знаний. История развития стереометрии как науки и ее роль в развитии современных инженерных и компьютерных технологий	Решать стереометрические задачи на доказательство математических отношений, нахождение геометрических величин (длин, углов, площадей, объемов). Использовать при решении стереометрических задач планиметрические факты и методы. Проводить логически корректные доказательные рассуждения при решении стереометрических и планиметрических задач. Сравнивать и анализировать реальные ситуации и выявлять возможность ее моделирования на языке геометрии. Моделировать реальную ситуацию на языке геометрии и исследовать построенные модели, в том числе и с использованием аппарата алгебры. Использовать компьютерные программы при решении задач.

		Получать представление о геометрии как о развивающейся науке, исследующей окружающий мир, связанной с реальными объектами, помогающей решить реальные жизненные ситуации о роли стереометрии в развитии современных инженерных и компьютерных технологий. Сравнивать и анализировать утверждения с целью выявления логически корректных и некорректных рассуждений. Исследовать построенные модели. Использовать цифровые ресурсы
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	102	

11 КЛАСС

Название	Количество	Основное содержание	Основные виды деятельности
раздела (темы) курса	часов		учащихся
Аналитическая геометрия	15	Повторение: координаты вектора на плоскости и в пространстве, скалярное произведение векторов, вычисление угла между векторами в пространстве. Уравнение прямой, проходящей через две точки. Уравнение плоскости, нормаль, уравнение плоскости в отрезках. Векторное произведение. Линейные неравенства, линейное программирование. Аналитические методы расчета угла между прямыми и плоскостями в многогранниках. Формула расстояния от точки до плоскости в координатах. Нахождение расстояний от точки до плоскости в кубе и правильной пирамиде	Актуализировать факты и методы планиметрии, релевантные теме, проводить аналогии. Сводить действия с векторами к аналогичным действиям с их координатами. Вспомнить определение скалярного умножения и его свойства. Вычислять с помощью скалярного умножения длины векторов, углы между ними, устанавливать перпендикулярность векторов. Выводить уравнение плоскости и формулу расстояния от точки до плоскости. Решать задачи, сочетая координатный и векторный методы. Проводить логически корректные доказательные рассуждения при решении геометрических задач на применение векторно-координатного метода.

			Анализировать и моделировать на языке геометрии реальные ситуации, связанные векторами и координатами. Исследовать построенные модели, в том числе и с использованием аппарата алгебры. Использовать компьютерные программы. Знакомиться с историей развития математики
Повторение, обобщение и систематизация знаний	15	Сечения многогранников: стандартные многогранники, метод следов, стандартные плоскости, пересечения прямых и плоскостей. Параллельные прямые и плоскости: параллельные сечения, расчет отношений, углы между скрещивающимися прямыми. Перпендикулярные прямые и плоскости: стандартные пары перпендикулярных плоскостей и прямых, симметрии многогранников, теорема о трех перпендикулярах, вычисления длин	Строить сечения. Решать стереометрические задачи на доказательство математических отношений, нахождение геометрических величин (длин, углов, площадей, объемов). Использовать при решении стереометрических задач планиметрические факты и методы. Проводить логически корректные доказательные рассуждения при решении стереометрических задач. Сравнивать и анализировать

		в многогранниках. Повторение: площади многоугольников, формулы для площадей, соображения подобия. Площади сечений многогранников: площади поверхностей, разрезания на части, соображения подобия	реальные ситуации и выявлять возможность ее моделирования на языке геометрии. Моделировать реальную ситуацию на языке геометрии и исследовать построенные модели, в том числе и с использованием аппарата алгебры. Использовать компьютерные программы при решении задач
Объем многогранника	17	Объем тела. Объем прямоугольного параллелепипеда. Задачи об удвоении куба, о квадратуре куба; о трисекции угла. Стереометрические задачи, связанные с объемом прямоугольного параллелепипеда. Прикладные задачи, связанные с вычислением объема прямоугольного параллелепипеда. Объем прямой призмы. Стереометрические задачи, связанные с вычислением объемов прямой призмы. Прикладные задачи, связанные с объемом прямой призмы.	Свободно оперировать понятиями: объем тела, объем прямоугольного параллелепипеда. Формулировать основные свойства объемов. Доказывать теорему об объеме прямоугольного параллелепипеда, следствия из нее. Разрезать многогранники, перекладывать части. Решать стереометрические задачи, связанные с вычислением объема прямоугольного параллелепипеда, призмы. Сравнивать и анализировать утверждения с целью выявления

		Вычисление объемов тел с помощью определенного интеграла. Объем наклонной призмы, пирамиды. Формула объема пирамиды. Отношение объемов пирамид с общим углом. Стереометрические задачи, связанные с объемами наклонной призмы, пирамиды. Прикладные задачи по теме «Объемы тел», связанные с объемом наклонной призмы, пирамиды. Применение объемов. Вычисление расстояния до плоскости	логически корректных и некорректных рассуждений. Анализировать и моделировать на языке геометрии реальные ситуации, связанные с объемом прямоугольного параллелепипеда, призмы, пирамиды. Исследовать построенные модели, в том числе и с использованием аппарата алгебры. Выводить основную интегральную формулу для вычисления объемов тел. Доказывать теорему об объеме наклонной призмы на примере треугольной призмы и для произвольной призмы. Доказывать теорему: об объеме пирамиды, формулировать следствия из нее: объем усеченной пирамиды. Выводить формулу для вычисления объемов усеченной пирамиды
Тела вращения	24	Цилиндрическая поверхность, образующие цилиндрической поверхности.	Свободно оперировать понятиями: цилиндрическая поверхность, цилиндр. Изучать способы

Цилиндр. Прямой круговой цилиндр. Площадь поверхности цилиндра. Коническая поверхность, образующие конической поверхности. Конус. Сечение конуса плоскостью, параллельной плоскости основания. Усеченный конус. Изображение конусов и усеченных конусов. Площадь боковой поверхности и полной поверхности конуса. Стереометрические задачи на доказательство и вычисление, построением сечений цилиндра, конуса. Прикладные задачи, связанные с цилиндром. Сфера и шар. Пересечение сферы и шара с плоскостью. Касание шара и сферы плоскостью. Вид и изображение шара. Уравнение сферы. Площадь сферы и ее частей. Симметрия сферы и шара.

получения цилиндрической поверхности, цилиндра. Изображать цилиндр и его сечения плоскостью. Свободно оперировать понятиями: коническая поверхность, конус, усеченный конус. Изучать способы получения конической поверхности, конуса. Изображать конус и его сечения плоскостью, проходящей через ось, и плоскостью, перпендикулярной к оси. Выводить формулы для вычисления боковой и полной поверхностей тел вращения. Решать стереометрические задачи, связанные с телами вращения, нахождением площади боковой и полной поверхности, построением сечений. Использовать при решении задач

планиметрические факты и методы.

утверждения с целью выявления

Сравнивать и анализировать

логически корректных

Стереометрические задачи на доказательство и вычисление, связанные со сферой и шаром, построением их сечений плоскостью.
Прикладные задачи, связанные

со сферой и шаром.
Повторение: окружность на плоскости, вычисления в окружности, стандартные подобия.

Различные комбинации тел вращения и многогранников. Задачи по теме «Тела и поверхности вращения»

и некорректных рассуждений. Анализировать и моделировать на языке геометрии реальные ситуации, связанные с конусом и цилиндром.

Исследовать построенные модели, в том числе и с использованием аппарата алгебры Актуализировать факты и методы

планиметрии, релевантные теме, проводить аналогии.

Свободно оперировать понятиями: сфера и шар, центр, радиус, диаметр сферы и шара.

Исследовать взаимное расположение сферы и плоскости.

Формулировать определение касательной плоскости к сфере. Доказывать теоремы о свойстве и признаке касательной плоскости. Выводить формулу для вычисления площади сферы через радиус сферы. Решать стереометрические задачи, связанные со сферой и шаром, нахождением площади сферы и ее частей, построением сечений сферы

и шара.
Анализировать и моделировать
на языке геометрии реальные
ситуации, связанные с шаром
и сферой.
Решать простые задачи, в которых
фигурируют комбинации тел
вращения и многогранников.
Использовать при решении задач,
связанных со сферой и шаром,
планиметрические факты и методы.
Решать стереометрические задачи,
связанные с телами вращения,
построением сечений тел вращения,
с комбинациями тел вращения
и многогранников.
Проводить логически корректные
доказательные рассуждения
при решении геометрических задач,
связанных с перпендикулярностью
плоскостей.
Анализировать и моделировать
на языке геометрии реальные
ситуации, связанные с
многогранниками.
Исследовать построенные модели,

			в том числе и с использованием аппарата алгебры
Площади поверхности и объемы круглых тел	9	Объем цилиндра. Теорема об объеме прямого цилиндра. Площади боковой и полной поверхности цилиндра. Вычисление объемов тел с помощью определенного интеграла. Объем конуса. Площади боковой и полной поверхности конуса. Стереометрические задачи, связанные с вычислением объемов цилиндра, конуса. Прикладные задачи по теме «Объемы и площади поверхностей тел. Объем шара и шарового сектора. Теорема об объеме шара. Площадь сферы. Стереометрические задачи, связанные с вычислением объемов шара, шарового сегмента, шарового сектора. Прикладные задачи по теме «Объемы тел», связанные	Свободно оперировать понятиями: объем тела, площадь поверхности. Формулировать основные свойства объемов. Доказывать теоремы: об объеме цилиндра; об объеме конуса. Выводить формулы для вычисления объема усеченного конуса. Исследовать построенные модели, в том числе и с использованием аппарата алгебры. Знать возможности решения задач на построение циркулем и линейкой, о классических неразрешимых задачах. Свободно оперировать понятиями: шаровой сегмент, шаровой слой, шаровой сектор, основание и высота сегмента, основание и высота шарового слоя. Выводить формулы для нахождения объемов шарового сегмента, площади сферы.

с объемом шара и площадью сферы. Соотношения между площадями поверхностей и объемами подобных тел.

Подобные тела в пространстве. Изменение объема при подобии. Стереометрические задачи, связанные с вычислением объемов тел и площадей поверхностей

Доказывать теорему об объеме шара. Решать стереометрические задачи. связанные с объемом шара, шарового сегмента, шарового сектора, площадью сферы. Сравнивать и анализировать утверждения с целью выявления логически корректных и некорректных рассуждений. Анализировать и моделировать на языке геометрии реальные ситуации, связанные с объемом шара, шарового сегмента, шарового сегмента, площадью сферы. Свободно оперировать понятием: подобные тела в пространстве. Вычислять объемы тел с помошью определенного интеграла. Решать стереометрические задачи, связанные с соотношениями между площадями поверхностей и объемами подобных тел. Проводить логически корректные доказательные рассуждения при решении геометрических задач, связанных с вычислением объемов

			тел с помощью определенного интеграла, нахождением соотношения между площадями поверхностей и объемами подобных тел. Анализировать и моделировать на языке геометрии реальные ситуации, связанные с объемами и поверхностями тел, на доказательство и на нахождение геометрических величин
Движения	5	Движения пространства. Отображения. Движения и равенство фигур. Общие свойства движений. Виды движений: параллельный перенос, центральная симметрия, зеркальная симметрия, поворот вокруг прямой. Преобразования подобия. Прямая и сфера Эйлера. Геометрические задачи на применение движения	Свободно оперировать понятиями: отображение пространства на себя, движение пространства; центральная, осевая и зеркальная симметрии, параллельный перенос; равенство и подобие фигур. Доказывать утверждения о том, что центральная, осевая и зеркальная симметрии, параллельный перенос являются движениями. Выполнять преобразования подобия. Оперировать понятиями: прямая и сфера Эйлера. Решать геометрические задачи

			с использованием движений. Использовать при решении задач движения пространства и их свойства
Повторение, обобщение и систематизация знаний	17	Обобщающее повторение понятий и методов курса геометрии 10–11 классов, систематизация знаний. История развития стереометрии как науки и ее роль в развитии современных инженерных и компьютерных технологий	Решать стереометрические задачи на доказательство математических отношений, нахождение геометрических величин (длин, углов, площадей, объемов). Использовать при решении стереометрических задач планиметрические факты и методы. Проводить логически корректные доказательные рассуждения при решении стереометрических и планиметрических задач. Сравнивать и анализировать реальные ситуации и выявлять возможность ее моделирования на языке геометрии. Моделировать реальную ситуацию на языке геометрии и исследовать построенные модели, в том числе и с использованием аппарата алгебры.

		Использовать компьютерные программы при решении задач. Получать представление о геометрии как о развивающейся науке, исследующей окружающий мир, связанной с реальными объектами, помогающей решить реальные жизненные ситуации о роли стереометрии в развитии современных инженерных и компьютерных технологий
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	102	н компьютерных технологии

ФЕДЕРАЛЬНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ВЕРОЯТНОСТЬ И СТАТИСТИКА»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебный курс «Вероятность и статистика» углубленного уровня является продолжением и развитием одноименного учебного курса углубленного уровня на уровне среднего общего образования. Учебный курс предназначен для формирования у обучающихся статистической культуры и понимания роли теории вероятностей как математического инструмента для изучения случайных событий, величин и процессов. При изучении курса обогащаются представления обучающихся о методах исследования изменчивого мира, развивается понимание значимости и общности математических методов познания как неотъемлемой части современного естественно-научного мировоззрения.

Содержание учебного курса направлено на закрепление знаний, полученных при изучении курса на уровне основного общего образования, и на развитие представлений о случайных величинах и взаимосвязях между ними на важных примерах, сюжеты которых почерпнуты из окружающего мира. В результате сформироваться представление обучающихся должно употребительных и общих математических моделях, используемых для описания антропометрических и демографических величин, погрешностей в различные рода длительности безотказной работы технических характеристик массовых явлений и процессов в обществе. Учебный курс является базой для освоения вероятностно-статистических методов, необходимых специалистам не только инженерных специальностей, но также социальных и психологических, поскольку современные общественные науки в значительной мере используют аппарат анализа больших данных. Центральную часть учебного курса занимает обсуждение закона больших чисел – фундаментального закона природы, имеющего математическую формализацию.

В соответствии с указанными целями в структуре учебного курса «Вероятность и статистика» на углубленном уровне выделены основные содержательные линии: «Случайные события и вероятности» и «Случайные величины и закон больших чисел».

Помимо основных линий в учебный курс включены элементы теории графов и теории множеств, необходимые для полноценного освоения материала данного учебного курса и смежных математических учебных курсов.

Содержание линии «Случайные события и вероятности» служит основой для формирования представлений о распределении вероятностей между значениями случайных величин. Важную часть в этой содержательной линии занимает изучение геометрического и биномиального распределений и знакомство с их непрерывными аналогами — показательным и нормальным распределениями.

Темы, связанные с непрерывными случайными величинами и распределениями, акцентируют внимание обучающихся на описании и изучении случайных явлений с помощью непрерывных функций. Основное внимание уделяется показательному и нормальному распределениям.

В учебном курсе предусматривается ознакомительное изучение связи между случайными величинами и описание этой связи с помощью коэффициента корреляции и его выборочного аналога. Эти элементы содержания развивают тему «Диаграммы рассеивания», изученную на уровне основного общего образования, и во многом опираются на сведения из курсов алгебры и геометрии.

Еще один элемент содержания, который предлагается на ознакомительном уровне — последовательность случайных независимых событий, наступающих в единицу времени. Ознакомление с распределением вероятностей количества таких событий носит развивающий характер и является актуальным для будущих абитуриентов, поступающих на учебные специальности, связанные с общественными науками, психологией и управлением.

Общее число часов, рекомендованных для изучения учебного курса «Вероятность и статистика» на углубленном уровне, — 68 часов: в 10 классе — 34 часа (1 час в неделю), в 11 классе — 34 часа (1 час в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ

10 КЛАСС

Граф, связный граф, пути в графе: циклы и цепи. Степень (валентность) вершины. Графы на плоскости. Деревья.

Случайные эксперименты (опыты) и случайные события. Элементарные события (исходы). Вероятность случайного события. Близость частоты и вероятности событий. Случайные опыты с равновозможными элементарными событиями.

Операции над событиями: пересечение, объединение, противоположные события. Диаграммы Эйлера. Формула сложения вероятностей.

Условная вероятность. Умножение вероятностей. Дерево случайного эксперимента. Формула полной вероятности. Формула Байеса. Независимые события.

Бинарный случайный опыт (испытание), успех и неудача. Независимые испытания. Серия независимых испытаний до первого успеха. Перестановки и факториал. Число сочетаний. Треугольник Паскаля. Формула бинома Ньютона.

Серия независимых испытаний Бернулли. Случайный выбор из конечной совокупности.

Случайная величина. Распределение вероятностей. Диаграмма распределения. Операции над случайными величинами. Бинарная случайная величина. Примеры распределений, в том числе геометрическое и биномиальное.

Совместное распределение двух случайных величин. Независимые случайные величины.

Математическое ожидание случайной величины (распределения). Примеры применения математического ожидания (страхование, лотерея). Математическое ожидание бинарной случайной величины. Математическое ожидание суммы случайных величин. Математическое ожидание геометрического и биномиального распределений.

Дисперсия и стандартное отклонение случайной величины (распределения). Дисперсия бинарной случайной величины. Математическое ожидание произведения и дисперсия суммы независимых случайных величин. Дисперсия и стандартное отклонение биномиального распределения. Дисперсия и стандартное отклонение геометрического распределения..

11 КЛАСС

Неравенство Чебышёва. Теорема Чебышёва. Теорема Бернулли. Закон больших чисел. Выборочный метод исследований. Выборочные характеристики. Оценивание вероятности события по выборочным данным. Проверка простейших гипотез с помощью изученных распределений.

Непрерывные случайные величины. Примеры. Функция плотности вероятности распределения. Равномерное распределение и его свойства. Задачи, приводящие к показательному распределению. Задачи, приводящие к нормальному распределению. Функция плотности вероятности показательного распределения, функция плотности вероятности нормального распределения. Функция плотности и свойства нормального распределения.

Последовательность одиночных независимых событий. Задачи, приводящие к распределению Пуассона.

Ковариация двух случайных величин. Коэффициент линейной корреляции. Совместные наблюдения двух величин. Выборочный коэффициент корреляции. Различие между линейной связью и причинно-следственной связью. Линейная регрессия, метод наименьших квадратов.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу 10 класса обучающийся научится:

К концу 10 класса обучающийся научится:

свободно оперировать понятиями: граф, плоский граф, связный граф, путь в графе, цепь, цикл, дерево, степень вершины, дерево случайного эксперимента;

свободно оперировать понятиями: случайный эксперимент (опыт), случайное событие, элементарное случайное событие (элементарный исход) случайного опыта, находить вероятности событий в опытах с равновозможными элементарными событиями;

находить и формулировать события: пересечение, объединение данных событий, событие, противоположное данному, использовать диаграммы Эйлера,

координатную прямую для решения задач, пользоваться формулой сложения вероятностей для вероятностей двух и трех случайных событий;

оперировать понятиями: условная вероятность, умножение вероятностей, независимые события, дерево случайного эксперимента, находить вероятности событий с помощью правила умножения, дерева случайного опыта, использовать формулу полной вероятности, формулу Байеса при решении задач, определять независимость событий по формуле и по организации случайного эксперимента;

применять изученные комбинаторные формулы для перечисления элементов множеств, элементарных событий случайного опыта, решения задач по теории вероятностей;

свободно оперировать понятиями: бинарный случайный опыт (испытание), успех и неудача, независимые испытания, серия испытаний, находить вероятности событий: в серии испытаний до первого успеха, в серии испытаний Бернулли, в опыте, связанном со случайным выбором из конечной совокупности;

свободно оперировать понятиями: случайная величина, распределение вероятностей, диаграмма распределения, бинарная случайная величина, геометрическое, биномиальное распределение;

оперировать понятиями: совместное распределение двух случайных величин, использовать таблицу совместного распределения двух случайных величин для выделения распределения каждой величины, определения независимости случайных величин;

свободно оперировать понятием математического ожидания случайной величины (распределения), применять свойства математического ожидания при решении задач, вычислять математическое ожидание биномиального и геометрического распределений;

свободно оперировать понятиями: дисперсия, стандартное отклонение случайной величины, применять свойства дисперсии случайной величины (распределения) при решении задач, вычислять дисперсию и стандартное отклонение геометрического и биномиального распределений.

К концу 11 класса обучающийся научится:

вычислять выборочные характеристики по данной выборке и оценивать характеристики генеральной совокупности данных по выборочным характеристикам. Оценивать вероятности событий и проверять простейшие статистические гипотезы, пользуясь изученными распределениями;

приводить примеры задач, приводящих к показательному распределению, задач, приводящих к нормальному распределению. Оперировать понятиями: функция плотности вероятности показательного распределения, функция плотности вероятности нормального распределения, функция плотности и свойства нормального распределения;

определять коэффициент линейной корреляции, выборочный коэффициент корреляции.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 КЛАСС

Название раздела (темы)	Количество часов	Основное содержание	Основные виды деятельности обучающихся
Элементы теории графов	3	Граф, связный граф, представление задачи с помощью графа. Степень (валентность) вершины. Путь в графе. Цепи и циклы. Графы на плоскости. Дерево случайного эксперимента	Представлять объекты и связи между ними с помощью графа, находить пути между вершинами графа. Выделять в графе цепи и циклы. Строить дерево по описанию случайного опыта, описывать случайные события в терминах дерева. Решать задачи с помощью графов
Случайные опыты, случайные события и вероятности событий	3	Случайные эксперименты (опыты) и случайные события. Элементарные события (исходы). Вероятность случайного события. Вероятности событий в опытах с равновозможными элементарными событиями	Выделять и описывать случайные события в случайном опыте. Формулировать условия проведения случайного опыта. Находить вероятности событий в опытах с равновозможными элементарными исходами

Операции над множествами и событиями. Сложение и умножение вероятностей. Условная вероятность. Независимые события	5	Пересечение, объединение множеств и событий, противоположные события. Формула сложения вероятностей Условная вероятность. Умножение вероятностей. Формула условной вероятности. Формула полной вероятности. Формула Байеса. Независимые события	Использовать диаграммы Эйлера и вербальное описание событий при выполнении операций над событиями. Оценивать изменение вероятностей событий по мере наступления других событий в случайном опыте. Решать задачи, в том числе с использованием дерева случайного опыта, формул сложения и умножения вероятностей
Элементы комбинаторики	4	Комбинаторное правило умножения. Перестановки и факториал. Число сочетаний. Треугольник Паскаля. Формула бинома Ньютона	Формулировать и доказывать комбинаторные факты. Использовать правило умножения, изученные комбинаторные формулы для перечисления элементов различных множеств, в том числе элементарных событий в случайном опыте. Пользоваться формулой и треугольником Паскаля для определения числа сочетаний. Применять формулу бинома Ньютона для преобразования выражений

Серии последовательных испытаний. Испытания Бернулли. Случайный выбор из конечной совокупности	5	Бинарный случайный опыт (испытание), успех и неудача. Независимые испытания. Серия независимых испытаний до первого успеха. Серия независимых испытаний Бернулли. Случайный выбор из конечной совокупности. Практическая работа с использованием электронных таблиц	Разбивать сложные эксперименты на отдельные испытания. Решать задачи на поиск вероятностей событий в серии испытаний до первого успеха и в сериях испытаний Бернулли, а также в опытах со случайным выбором из конечной совокупности с использованием комбинаторных фактов и формул, в том числе в ходе практической работы с применением стандартных функций
Случайные величины и распределения	14	Случайная величина. Распределение вероятностей. Диаграмма распределения. Операции над случайными величинами. Примеры распределений. Бинарная случайная величина. Геометрическое расп-ределение. Биномиальное распределение. Математическое ожидание случайной величины. Совместное распределение двух случайных величин. Независимые случайные величины. Свойства математического ожидания.	Осваивать понятия: случайная величина, распределение, таблица распределения, диаграмма распределения. Находить значения суммы и произведения случайных величин. Строить бинарные распределения по описанию событий в случайных опытах. Строить и распознавать геометрическое и биномиальное распределения. Решать задачи на вычисление математического ожидания.

		Математическое ожидание бинарной случайной величины. Математическое ожидание геометрического и биномиального распределений. Дисперсия и стандартное отклонение. Дисперсия бинарной случайной величины. Свойства дисперсии. Математическое ожидание произведения и дисперсия суммы независимых случайных величин. Дисперсия биномиального распределения. Практическая работа с использованием электронных таблиц	Строить совместные распределения. Изучать свойства математического ожидания. Решать задачи с помощью изученных свойств. По изученным формулам находить математические ожидания случайных величин, имеющих геометрическое и биномиальное распределения Осваивать понятия: дисперсия, стандартное отклонение случайной величины. Находить дисперсию по распределению. Изучать свойства дисперсии. По изученным формулам находить дисперсию биномиального распределения, в том числе в ходе практической работы
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	34		

11 КЛАСС

Название раздела (темы)	Количество часов	Основное содержание	Основные виды деятельности обучающихся
Закон больших чисел	5	Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Закон больших чисел. Выборочный метод исследований. Практическая работа с использованием электронных таблиц	Разбирать доказательства теорем. Осваивать выборочный метод исследований, в том числе в ходе практической работы
Элементы математической статистики	6	Генеральная совокупность и случайная выборка. Знакомство с выборочными характеристиками. Оценка среднего и дисперсии генеральной совокупности с помощью выборочных характеристик. Оценивание вероятностей событий по выборке. Статистическая гипотеза. Проверка простейших гипотез с помощью свойств изученных распределений. Практическая работа с использованием электронных таблиц	Осваивать понятия: генеральная совокупность, выборка, выборочное среднее и выборочная дисперсия. Вычислять выборочные характеристики и на их основе оценивать характеристики генеральной совокупности. Осваивать понятия: статистическая гипотеза. Оценивать вероятность событий и проверять простейшие гипотезы на основе выборочных данных, в том числе в ходе практической работы

Непрерывные случайные величины (распределения), показательное и нормальное распределения	4	Примеры непрерывных случайных величин. Функция плотности вероятности. Равномерное распределение. Примеры задач, приводящих к показательному и к нормальному распределениям. Функция плотности вероятности показательного распределения. Функция плотности вероятности нормального распределения	Знакомиться понятиями: непрерывная случайная величина, непрерывное распределение, функция плотности вероятности. Находить вероятности событий по данной функции плотности. Знакомиться с понятиями: показательное распределение, нормальное распределение. Выделять по описанию случайные величины, распределенные по показательному закону, по нормальному закону. Разбирать примеры задач, приводящих к показательному распределению и к нормальному распределению
Распределение Пуассона	2	Последовательность одиночных независимых событий. Пример задачи, приводящей к распределению Пуассона. Практическая работа с использованием электронных таблиц	Выделять по описанию случайного опыта величины, распределенные по закону Пуассона. Решать задачи, в том числе в ходе практической работы с применением стандартных функций электронных таблиц

Связь между случайными величинами	6	Ковариация двух случайных величин. Коэффициент корреляции. Совместные наблюдения двух величин. Выборочный коэффициент корреляции. Различие между линейной связью и причинноследственной связью. Линейная регрессия. Практическая работа с использованием электронных таблиц	Осваивать понятия: ковариация, коэффициент корреляции, линейная зависимость. Оценивать характер связи между случайными величинами, исходя из природы данных и вычисленных характеристик. Использовать диаграммы рассеивания для изображения совместного рассеивания данных. Находить коэффициенты оси диаграммы, в том числе в ходе практической работы с применением стандартных функций
Обобщение и систематизация знаний	11	Представление данных с помощью таблиц и диаграмм, описательная статистика, опыты с равновозможными элементарными событиями, вычисление вероятностей событий с применением формул и графических методов (координатная прямая, дерево,	Повторять изученное и выстраивать систему знаний

		диаграмма Эйлера), случайные величины и распределения, математическое ожидание случайной величины	
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	34		

ПЕРЕЧЕНЬ (КОДИФИКАТОР) ПРОВЕРЯЕМЫХ ТРЕБОВАНИЙ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ И ЭЛЕМЕНТОВ СОДЕРЖАНИЯ ПО МАТЕМАТИКЕ

Для проведения единого государственного экзамена по математике (далее – ЕГЭ по математике) используется перечень (кодификатор) проверяемых требований к результатам освоения основной образовательной программы среднего общего образования и элементов содержания.

Проверяемые на ЕГЭ по математике требования к результатам освоения основной образовательной программы среднего общего образования

Код проверяемого требования	Проверяемые требования к предметным результатам освоения основной образовательной программы среднего общего образования
1	Владение методами доказательств, алгоритмами решения задач; умение формулировать и оперировать понятиями: определение, аксиома, теорема, следствие, свойство, признак, доказательство, равносильные формулировки; применять их; умение формулировать обратное и противоположное утверждение, приводить примеры и контрпримеры, использовать метод математической индукции; проводить доказательные рассуждения при решении задач, оценивать логическую правильность рассуждений; умение оперировать понятиями: множество, подмножество, операции над множествами; умение использовать теоретико-множественный аппарат для описания реальных процессов и явлений и при решении задач, в том числе из других учебных предметов; умение оперировать понятиями: граф, связный граф, дерево, цикл, граф на плоскости; умение задавать и описывать графы различными способами; использовать графы при решении задач
2	Умение оперировать понятиями: натуральное число, целое число, степень с целым показателем, корень натуральной степени, степень с рациональным показателем, степень с действительным показателем, логарифм числа, синус, косинус и тангенс произвольного числа, остаток по модулю, рациональное число, иррациональное число, множества натуральных, целых, рациональных, действительных чисел; умение использовать

признаки делимости, наименьший общий делитель и наименьшее общее кратное, алгоритм Евклида при решении задач; знакомство с различными позиционными системами счисления; умение выполнять вычисление значений и преобразования выражений со логарифмами, преобразования дробностепенями И рациональных выражений; умение оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия, бесконечно убывающая геометрическая прогрессия; умение задавать последовательности, в том числе с помощью формул; умение рекуррентных оперировать понятиями: комплексное число, сопряженные комплексные числа, модуль и аргумент комплексного числа, форма записи комплексных чисел (геометрическая, тригонометрическая и алгебраическая); уметь производить арифметические действия с комплексными числами; примеры использования приводить комплексных оперировать понятиями: матрица 2 × 2 и 3 × 3, определитель матрицы, геометрический смысл определителя

3

Умение оперировать понятиями: рациональные, иррациональные, показательные, степенные, логарифмические, тригонометрические уравнения и неравенства, их системы; умение оперировать понятиями: тождество, тождественное преобразование, уравнение, неравенство, система уравнений и неравенств, равносильность уравнений, неравенств и систем; умение решать уравнения, неравенства и системы с помощью различных приемов; решать уравнения, неравенства и системы с параметром; применять уравнения, неравенства, их системы для решения математических задач и задач из различных областей науки и реальной жизни

4

Умение оперировать понятиями: функция, четность функции, периодичность функции, ограниченность функции, монотонность функции, экстремум функции, наибольшее и наименьшее значения функции на промежутке, непрерывная функция, асимптоты графика функции, первая и вторая производная функции, геометрический и физический смысл производной, первообразная, определенный интеграл; умение находить асимптоты графика функции; умение вычислять производные суммы, произведения, частного и композиции функций, находить уравнение касательной к графику функции; умение находить производные элементарных функций; умение использовать производную для исследования функций, находить наибольшие и наименьшие значения функций; строить графики многочленов

	с использованием аппарата математического анализа; применять производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических и физических задачах; находить площади и объемы фигур с помощью интеграла; приводить примеры математического моделирования с помощью дифференциальных уравнений
5	Умение оперировать понятиями: график функции, обратная функция, композиция функций, линейная функция, квадратичная функция, рациональная функция, степенная функция, тригонометрические функции, обратные тригонометрические функции, показательная и логарифмическая функции; умение строить графики изученных функций, выполнять преобразования графиков функций, использовать графики для изучения процессов и зависимостей, при решении задач из других учебных предметов и задач из реальной жизни; выражать формулами зависимости между величинами; использовать свойства и графики функций для решения уравнений, неравенств и задач с параметрами; изображать на координатной плоскости множества решений уравнений, неравенств и их систем
6	Умение решать текстовые задачи разных типов (в том числе на проценты, доли и части, на движение, работу, стоимость товаров и услуг, налоги, задачи из области управления личными и семейными финансами); составлять выражения, уравнения, неравенства и их системы по условию задачи, исследовать полученное решение и оценивать правдоподобность результатов; умение моделировать реальные ситуации на языке математики; составлять выражения, уравнения, неравенства и их системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат
7	Умение оперировать понятиями: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах, дисперсия, стандартное отклонение числового набора; умение извлекать, интерпретировать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства реальных процессов и явлений; представлять информацию с помощью таблиц и диаграмм; исследовать статистические данные, в том числе с применением графических методов и электронных средств; графически исследовать совместные наблюдения с помощью диаграмм рассеивания и линейной регрессии

8	Умение оперировать понятиями: случайный опыт и случайное событие, вероятность случайного события; умение вычислять вероятность с использованием графических методов; применять формулы сложения и умножения вероятностей, формулу полной вероятности, формулу Бернулли, комбинаторные факты и формулы; оценивать вероятности реальных событий; умение оперировать понятиями: случайная величина, распределение вероятностей, математическое ожидание, дисперсия и стандартное отклонение случайной величины, функции распределения и плотности равномерного, показательного и нормального распределений; умение использовать свойства изученных распределений для решения задач; знакомство с понятиями: закон больших чисел, методы выборочных исследований; умение приводить примеры проявления закона больших чисел в природных и общественных явлениях; умение оперировать понятиями: сочетание, перестановка, число сочетаний, число перестановок; бином Ньютона; умение применять комбинаторные факты и рассуждения для решения задач; оценивать вероятности реальных событий; составлять вероятностную модель и интерпретировать полученный результат
9	Умение оперировать понятиями: точка, прямая, плоскость, пространство, отрезок, луч, величина угла, плоский угол, двугранный угол, трехгранный угол, скрещивающиеся прямые, параллельность и перпендикулярность прямых и плоскостей, угол между прямыми, угол между прямой и плоскостью, угол между плоскостями, расстояние от точки до плоскости, расстояние между прямыми, расстояние между плоскостями; умение использовать при решении задач изученные факты и теоремы планиметрии; умение оценивать размеры объектов окружающего мира; строить математические модели с помощью геометрических понятий и величин, решать связанные с ними практические задачи
10	Умение оперировать понятиями: площадь фигуры, объем фигуры, многогранник, правильный многогранник, сечение многогранника, куб, параллелепипед, призма, пирамида, фигура и поверхность вращения, цилиндр, конус, шар, сфера, площадь сферы, площадь поверхности пирамиды, призмы, конуса, цилиндра, объем куба, прямоугольного параллелепипеда,

	пирамиды, призмы, цилиндра, конуса, шара, развертка поверхности, сечения конуса и цилиндра, параллельные оси или основанию, сечение шара, плоскость, касающаяся сферы, цилиндра, конуса; умение строить сечение многогранника, изображать многогранники, фигуры и поверхности вращения, их сечения, в том числе с помощью электронных средств; умение применять свойства геометрических фигур, самостоятельно формулировать определения изучаемых фигур, выдвигать гипотезы о свойствах и признаках геометрических фигур, обосновывать или опровергать их; умение проводить классификацию фигур по различным признакам, выполнять необходимые дополнительные построения
11	Умение оперировать понятиями: движение в пространстве, параллельный перенос, симметрия на плоскости и в пространстве, поворот, преобразование подобия, подобные фигуры; умение распознавать равные и подобные фигуры, в том числе в природе, искусстве, архитектуре; использовать геометрические отношения при решении задач; находить геометрические величины (длина, угол, площадь, объем) при решении задач из других учебных предметов и из реальной жизни; умение вычислять геометрические величины (длина, угол, площадь, объем, площадь поверхности), используя изученные формулы и методы, в том числе: площадь поверхности пирамиды, призмы, конуса, цилиндра, площадь сферы; объем куба, прямоугольного параллелепипеда, пирамиды, призмы, цилиндра, конуса, шара; умение находить отношение объемов подобных фигур
12	Умение оперировать понятиями: прямоугольная система координат, вектор, координаты точки, координаты вектора, сумма векторов, произведение вектора на число, разложение вектора по базису, скалярное произведение, векторное произведение, угол между векторами; умение использовать векторный и координатный метод для решения геометрических задач и задач других учебных предметов
13	Умение выбирать подходящий метод для решения задачи; понимание значимости математики в изучении природных и общественных процессов и явлений; умение распознавать проявление законов математики в искусстве, умение приводить примеры математических открытий российской и мировой математической науки

Перечень элементов содержания, проверяемых на ЕГЭ по математике

Код	Проверяемый элемент содержания
1	Числа и вычисления
1.1	Натуральные и целые числа. Признаки делимости целых чисел
1.2	Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби
1.3	Арифметический корень натуральной степени. Действия с арифметическими корнями натуральной степени
1.4	Степень с целым показателем. Степень с рациональным показателем. Свойства степени
1.5	Синус, косинус и тангенс числового аргумента. Арксинус, арккосинус, арктангенс числового аргумента
1.6	Логарифм числа. Десятичные и натуральные логарифмы
1.7	Действительные числа. Арифметические операции с действительными числами. Приближенные вычисления, правила округления, прикидка и оценка результата вычислений
1.8	Преобразование выражений
1.9	Комплексные числа
2	Уравнения и неравенства
2.1	Целые и дробно-рациональные уравнения
2.2	Иррациональные уравнения
2.3	Тригонометрические уравнения
2.4	Показательные и логарифмические уравнения
2.5	Целые и дробно-рациональные неравенства
2.6	Иррациональные неравенства
2.7	Показательные и логарифмические неравенства
2.8	Тригонометрические неравенства
2.9	Системы и совокупности уравнений и неравенств
2.10	Уравнения, неравенства и системы с параметрами
2.11	Матрица системы линейных уравнений. Определитель матрицы
2.8 2.9 2.10	Тригонометрические неравенства Системы и совокупности уравнений и неравенств Уравнения, неравенства и системы с параметрами

3	Функции и графики
3.1	Функция, способы задания функции. График функции. Взаимно обратные функции. Четные и нечетные функции. Периодические функции
3.2	Область определения и множество значений функции. Нули функции. Промежутки знакопостоянства. Промежутки монотонности функции. Максимумы и минимумы функции. Наибольшее и наименьшее значение функции на промежутке
3.3	Степенная функция с натуральным и целым показателем. Ее свойства и график. Свойства и график корня n-ой степени
3.4	Тригонометрические функции, их свойства и графики
3.5	Показательная и логарифмическая функции, их свойства и графики
3.6	Точки разрыва. Асимптоты графиков функций. Свойства функций, непрерывных на отрезке
3.7	Последовательности, способы задания последовательностей
3.8	Арифметическая и геометрическая прогрессии. Формула сложных процентов
4	Начала математического анализа
4.1	Производная функции. Производные элементарных функций
4.2	Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значения функции на отрезке
4.3	Первообразная. Интеграл
5	Множества и логика
5.1	Множество, операции над множествами. Диаграммы Эйлера – Венна
5.2	Логика
6	Вероятность и статистика
6.1	Описательная статистика
6.2	Вероятность
6.3	Комбинаторика
7	Геометрия
7.1	Фигуры на плоскости
·	

7.2	Прямые и плоскости в пространстве
7.3	Многогранники
7.4	Тела и поверхности вращения
7.5	Координаты и векторы